7-5 小波分析之窗口傅里叶变换

7-5 小波分析之窗口傅里叶变换

1.定义

\qquad 从直观上理解,假设信号是一个声音,我们能听到不同时刻的不同声音。所以,一个信号是由时域和频域刻画的。
\qquad g ( t ) = g ( − t ) g(t)=g(-t) g(t)=g(t)是一个实的对称窗函数,对它平移 u u u各单位,以及调制(7-1小波分析之傅里叶分析有介绍平移与调制等性质)得到 g u , ξ ( t ) = e ( i ξ t ) g ( t − u ) g_{u,\xi}(t)=e^{(i\xi t)}g(t-u) gu,ξ(t)=e(iξt)g(tu) g g g规范化为 ∥ g ∥ = 1 \Vert g\Vert=1 g=1,使对任意的 ( u , ξ ) ∈ R 2 (u,\xi)\in \mathbb R^2 (u,ξ)R2 ∥ g u , ξ ∥ = 1 。 f ∈ L 2 ( R ) \Vert g_{u,\xi}\Vert=1。f\in L^2(\mathbb R) gu,ξ=1fL2(R)的窗口傅里叶变换为 S f ( u , ξ ) = < f , g ( u , ξ ) > = ∫ − ∞ + ∞ f ( t ) g ( t − u ) e − i ξ t d t . Sf(u,\xi)=<f,g_{(u,\xi)}>=\int_{-\infty}^{+\infty}f(t)g(t-u)e^{-i\xi t}dt. Sf(u,ξ)=<f,g(u,ξ)>=+f(t)g(tu)eiξtdt.

2.Heisenberg盒

\qquad 由于 g g g是偶函数,故 g u , ξ ( t ) = e ( i ξ t ) g ( t − u ) g_{u,\xi}(t)=e^{(i\xi t)}g(t-u) gu,ξ(t)=e(iξt)g(tu) u u u为中心,且它以 u u u为中心的时间跨度不依赖于 u u u ξ \xi ξ,即 σ t 2 = ∫ − ∞ + ∞ ( t − u ) 2 ∣ g u , ξ ( t ) ∣ 2 d t = ∫ − ∞ + ∞ t 2 ∣ g ( t ) ∣ 2 d t \sigma_t^2=\int_{-\infty}^{+\infty}(t-u)^2|g_{u,\xi}(t)|^2dt=\int_{-\infty}^{+\infty}t^2|g(t)|^2dt σt2=+(tu)2gu,ξ(t)2dt=+t2g(t)2dt(注: ∣ e i ξ t ∣ = 1 |e^{i\xi t}|=1 eiξt=1),因为 g g g实对称,故其傅里叶变换也实对称。 g u , ξ g_{u,\xi} gu,ξ的傅里叶变换为 g ^ u , ξ ( ω ) = g ^ ( ω − ξ ) e − i u ( ω − ξ ) \hat g_{u,\xi}(\omega)=\hat g(\omega-\xi)e^{-iu(\omega-\xi)} g^u,ξ(ω)=g^(ωξ)eiu(ωξ)(注:傅里叶变换的调制与平移也参照第一讲内容)它是频率窗 g ^ \hat g g^ ξ \xi ξ个平移,所以其中心频率为 ξ \xi ξ.它以 ξ \xi ξ为中心的频率跨度为 σ ω 2 = 1 2 π ∫ − ∞ + ∞ ( ω − ξ ) 2 ∣ g ^ u , ξ ( ω ) ∣ 2 d ω = ∫ − ∞ + ∞ ω 2 ∣ g ^ ( ω ) ∣ 2 d ω \sigma_\omega^2=\frac{1}{2\pi}\int_{-\infty}^{+\infty}(\omega-\xi)^2|\hat g_{u,\xi}(\omega)|^2d\omega=\int_{-\infty}^{+\infty}\omega^2|\hat g(\omega)|^2d\omega σω2=2π1+(ωξ)2g^u,ξ(ω)2dω=+ω2g^(ω)2dω.它不依赖于 u , ξ u,\xi u,ξ,所以 g u , ξ g_{u,\xi} gu,ξ对应以 ( u , ξ ) (u,\xi) (u,ξ)为中心,面积为 σ t 2 σ ω 2 \sigma_t^2\sigma_\omega^2 σt2σω2的Heisenberg盒。它的大小不依赖于 ( u , ξ ) (u,\xi) (u,ξ)所以意味着窗口傅里叶变换在时频平面上有不变的分辨率。

3.信号的重构

\qquad 当时频指标 ( u , ξ ) (u,\xi) (u,ξ) R 2 \mathbb R^2 R2上移动时,原子 g u , ξ g_{u,\xi} gu,ξ的Heisenberg盒覆盖了整个时-频空间。可以预见, f f f可由其窗口傅里叶变换 S f ( u , ξ ) Sf(u,\xi) Sf(u,ξ)来恢复。
窗口傅里叶变换重构公式: f ∈ L 2 ( R ) f\in L^2(\mathbb R) fL2(R),则 f ( t ) = 1 2 π ∫ − ∞ + ∞ ∫ − ∞ + ∞ S f ( u , ξ ) g ( t − u ) e i ξ t d ξ d u f(t)=\frac{1}{2\pi}\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}Sf(u,\xi)g(t-u)e^{i\xi t}d\xi du f(t)=2π1++Sf(u,ξ)g(tu)eiξtdξdu ∫ − ∞ + ∞ ∣ f ( t ) ∣ 2 d t = 1 2 π ∫ − ∞ + ∞ ∫ − ∞ + ∞ ∣ S f ( u , ξ ) ∣ 2 d ξ d u \int_{-\infty}^{+\infty}|f(t)|^2dt=\frac{1}{2\pi}\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}|Sf(u,\xi)|^2d\xi du +f(t)2dt=2π1++Sf(u,ξ)2dξdu
证明:令 f ξ = S f ( u , ξ ) f_\xi=Sf(u,\xi) fξ=Sf(u,ξ),应用傅里叶逆变换和Passval等式可证。
S f ( u , ξ ) = ∫ − ∞ + ∞ f ( t ) g ( t − u ) e − i ξ t d t = e − i ξ u ∫ − ∞ + ∞ f ( t ) g ( t − u ) e i ξ ( u − t ) d t = e − i ξ u f ∗ g ξ ( u ) Sf(u,\xi)=\int_{-\infty}^{+\infty}f(t)g(t-u)e^{-i\xi t}dt=e^{-i\xi u}\int_{-\infty}^{+\infty}f(t)g(t-u)e^{i\xi(u-t)}dt=e^{-i\xi u}f*g_\xi(u) Sf(u,ξ)=+f(t)g(tu)eiξtdt=eiξu+f(t)g(tu)eiξ(ut)dt=eiξufgξ(u),其中 g ( t ) = g ( − t ) , g ξ ( u ) = g ( u ) e − i ξ u g(t)=g(-t),g_\xi(u)=g(u)e^{-i\xi u} g(t)=g(t),gξ(u)=g(u)eiξu,故 f ξ f_\xi fξ的傅里叶变换为 f ^ ξ ( ω ) = f ^ ( ω + ξ ) g ^ ξ ( ω + ξ ) = f ^ ( ω + ξ ) g ^ ( ω ) \hat f_\xi(\omega)=\hat f(\omega+\xi)\hat g_\xi(\omega+\xi)=\hat f(\omega+\xi)\hat g(\omega) f^ξ(ω)=f^(ω+ξ)g^ξ(ω+ξ)=f^(ω+ξ)g^(ω),第一个等式的原因参照7-1节性质(卷积的傅里叶变换以及调制的傅里叶变换)。 g ( t − u ) g(t-u) g(tu)关于 u u u的傅里叶变换为 g ^ ( u ) e − i ξ t \hat g(u)e^{-i\xi t} g^(u)eiξt,于是 1 2 π ∫ − ∞ + ∞ ∫ − ∞ + ∞ S f ( u , ξ ) g ( t − u ) e i ξ t d ξ d u = 1 2 π ∫ − ∞ + ∞ 1 2 π f ^ ξ ( ω ) ∗ g ^ ( ω ) e − i t ξ e i ξ t d ω (1) \frac{1}{2\pi}\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}Sf(u,\xi)g(t-u)e^{i\xi t}d\xi du =\frac{1}{2\pi}\int_{-\infty}^{+\infty}\frac{1}{2\pi}\hat f_\xi(\omega)*\hat g(\omega)e^{-it\xi}e^{i\xi t}d\omega \tag1 2π1++Sf(u,ξ)g(tu)eiξtdξdu=2π1+2π1f^ξ(ω)g^(ω)eitξeiξtdω(1),由Fubini定理,因为 f ∈ L 2 f\in L^2 fL2,所以 S f ∈ L 2 Sf\in L^2 SfL2,由 g g g的定义可知 g ∈ L 2 g\in L^2 gL2,于是它们乘积的傅里叶变换也属于 L 2 L^2 L2,所以上式可积分换续,可得 ( 1 ) = 1 2 π ∫ − ∞ + ∞ 1 2 π ∫ − ∞ + ∞ f ^ ( ω ) g ^ ( ω ) e i ξ t d ξ d ω = 1 2 π ∫ − ∞ + ∞ f ^ ( ξ ) e i ξ t ( 1 2 π ∫ − ∞ + ∞ ∣ g ^ ( ω ) ∣ 2 d ω ) d ξ = f ( t ) (1)=\frac{1}{2\pi}\int_{-\infty}^{+\infty}\frac{1}{2\pi}\int_{-\infty}^{+\infty}\hat f(\omega)\hat g(\omega)e^{i\xi t}d\xi d\omega=\frac{1}{2\pi}\int_{-\infty}^{+\infty}\hat f(\xi)e^{i\xi t}(\frac{1}{2\pi}\int_{-\infty}^{+\infty}|\hat g(\omega)|^2d\omega)d\xi=f(t) (1)=2π1+2π1+f^(ω)g^(ω)eiξtdξdω=2π1+f^(ξ)eiξt(2π1+g^(ω)2dω)dξ=f(t)
定理的第二等式可由Plancherel公式导出: 1 2 π ∫ − ∞ + ∞ ∫ − ∞ + ∞ ∣ S f ( u , ξ ) ∣ 2 d ξ d u = 1 2 π ∫ − ∞ + ∞ 1 2 π ∫ − ∞ + ∞ ∣ S ^ f ( ω , ξ ) ∣ 2 d ξ d ω = 1 2 π ∫ − ∞ + ∞ 1 2 π ∫ − ∞ + ∞ ∣ f ^ ( ω + ξ ) g ^ ( ω ) ∣ 2 d ξ d ω \frac{1}{2\pi}\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}|Sf(u,\xi)|^2d\xi du=\frac{1}{2\pi}\int_{-\infty}^{+\infty}\frac{1}{2\pi}\int_{-\infty}^{+\infty}|\hat Sf(\omega,\xi)|^2d\xi d\omega=\frac{1}{2\pi}\int_{-\infty}^{+\infty}\frac{1}{2\pi}\int_{-\infty}^{+\infty}|\hat f(\omega+\xi)\hat g(\omega)|^2d\xi d\omega 2π1++Sf(u,ξ)2dξdu=2π1+2π1+S^f(ω,ξ)2dξdω=2π1+2π1+f^(ω+ξ)g^(ω)2dξdω再由Fubini定理可得 1 2 π ∫ − ∞ + ∞ ∫ − ∞ + ∞ ∣ S f ( u , ξ ) ∣ 2 d ξ d u = 1 2 π ∫ − ∞ + ∞ ( 1 2 π ∫ − ∞ + ∞ ∣ f ^ ( ω + ξ ) ∣ 2 d ξ ) ∣ g ^ ( ω ) ∣ 2 d ω = 1 2 π ∫ − ∞ + ∞ ∥ f ∥ ∣ g ^ ( ω ) ∣ 2 d ω = ∥ f ∥ \frac{1}{2\pi}\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}|Sf(u,\xi)|^2d\xi du=\frac{1}{2\pi}\int_{-\infty}^{+\infty}(\frac{1}{2\pi}\int_{-\infty}^{+\infty}|\hat f(\omega+\xi)|^2d\xi)|\hat g(\omega)|^2d\omega=\frac{1}{2\pi}\int_{-\infty}^{+\infty}\Vert f\Vert|\hat g(\omega)|^2d\omega=\Vert f\Vert 2π1++Sf(u,ξ)2dξdu=2π1+(2π1+f^(ω+ξ)2dξ)g^(ω)2dω=2π1+fg^(ω)2dω=f

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值