握手定理理解

图论中的定义
  • 设G=<V,E>为任意无向图,顶点总和为|V|,边数总和为|E| ,若|E|=m,则所有顶点的度数和=2m
图论–>现实的理解
  • 顶点–>人
  • 边–>人与人握手
  • 度–>一个人与其他人握手的次数
  • |E|=m–>共m次握手
  • 总定理–>n个人参与握手,若发生握手的总次数为m,则每个人的握手次数之和为2m
  • 理解:
    • 假设只有两个人,求总握手次数
    • 一次握手 == 两个人的握手次数分别加一 == 2个握手次数 ==总握手次数
    • so:总握手次数==2m
    • ps:不一定每个人都要与其他人握手,总度数只与总边数有关
握手定理引理
  • 一定有偶数个奇数度,或者没有奇数度:

    • 因为总度数==2m 偶数
  • 度数和<=n(n-1) :

    • 假设每个顶点都和其他顶点相连,则总度数=n*(n-1) (ps:顶点数*每个顶点的度数)
  • 一定两个度数相同的节点

    证明:

    • 设G是具有n个结点的简单图(n≥2) ,所以节点度有 0,1,2。。。(n-1)共n中可能
    • 但节点0或(n-1)不能同时于一张图~~(0代表没有节点相连,(n-1)代表跟剩下的节点都相连)~~
    • 所以n个节点只有(n-1)种度可能,必定有两个度数相同的节点
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值