握手定理很简单,简单到只有一行,连公式都没有:对于任意图,奇度数点的数量为偶数。
度数前面讲过,就是点的边的个数。对于有向图,度分入度和出度,无向图则不区分。下面我给出握手定理的证明,其实我是很讨厌做证明题的,作为程序员,习惯了数学定理拿来就用,根本不看证明过程,也不会去证明。
证明:
首先,对于任意图,因为一个边连接了两个点,所以总度数为边数的两倍,这个不需要证明了吧。否则进入证明地狱了。然后设度数为d函数,点为
v
1
v_1
v1到
v
n
v_n
vn,总边数为e,我们用公式描述如下:
∑
i
=
1
n
d
(
v
i
)
=
2
e
\sum_{i=1}^{n}d(v_i)=2e
i=1∑nd(vi)=2e
再把点分为奇入度点和偶入度点,简称为奇odd点和偶even点。于是有公式:
∑
i
=
1
n
d
(
v
i
)
=
∑
o
d
d
d
(
v
j
)
+
∑
e
v
e
n
d
(
v
k
)
\sum_{i=1}^{n}d(v_i)=\sum_{odd}d(v_j)+\sum_{even}d(v_k)
i=1∑nd(vi)=odd∑d(vj)+even∑d(vk)
偶点无论有多少个,入度总和都是偶数。所以上面的公式,可以拆分为:
∵
∑
i
=
1
n
d
(
v
i
)
=
2
e
∴
∑
i
=
1
n
d
(
v
i
)
为
偶
数
∵
∑
e
v
e
n
d
(
v
k
)
为
偶
数
∴
∑
i
=
1
n
d
(
v
i
)
−
∑
e
v
e
n
d
(
v
k
)
为
偶
数
∵
∑
o
d
d
d
(
v
j
)
=
∑
i
=
1
n
d
(
v
i
)
−
∑
e
v
e
n
d
(
v
k
)
∴
∑
o
d
d
d
(
v
j
)
为
偶
数
\because \sum_{i=1}^{n}d(v_i)=2e \\ \therefore \sum_{i=1}^{n}d(v_i)为偶数\\ \because \sum_{even}d(v_k) \ 为偶数\\ \therefore \sum_{i=1}^{n}d(v_i)-\sum_{even}d(v_k)为偶数\\ \because \sum_{odd}d(v_j) = \sum_{i=1}^{n}d(v_i)-\sum_{even}d(v_k)\\ \therefore \sum_{odd}d(v_j) 为偶数
∵i=1∑nd(vi)=2e∴i=1∑nd(vi)为偶数∵even∑d(vk) 为偶数∴i=1∑nd(vi)−even∑d(vk)为偶数∵odd∑d(vj)=i=1∑nd(vi)−even∑d(vk)∴odd∑d(vj)为偶数
偶数个奇数相加才能是偶数,握手定理证明完毕。
8.1 握手定理
最新推荐文章于 2024-01-10 23:54:40 发布