8.1 握手定理

  握手定理很简单,简单到只有一行,连公式都没有:对于任意图,奇度数点的数量为偶数。
  度数前面讲过,就是点的边的个数。对于有向图,度分入度和出度,无向图则不区分。下面我给出握手定理的证明,其实我是很讨厌做证明题的,作为程序员,习惯了数学定理拿来就用,根本不看证明过程,也不会去证明。
  证明:
  首先,对于任意图,因为一个边连接了两个点,所以总度数为边数的两倍,这个不需要证明了吧。否则进入证明地狱了。然后设度数为d函数,点为 v 1 v_1 v1 v n v_n vn,总边数为e,我们用公式描述如下:
∑ i = 1 n d ( v i ) = 2 e \sum_{i=1}^{n}d(v_i)=2e i=1nd(vi)=2e
  再把点分为奇入度点和偶入度点,简称为奇odd点和偶even点。于是有公式:
∑ i = 1 n d ( v i ) = ∑ o d d d ( v j ) + ∑ e v e n d ( v k ) \sum_{i=1}^{n}d(v_i)=\sum_{odd}d(v_j)+\sum_{even}d(v_k) i=1nd(vi)=oddd(vj)+evend(vk)
  偶点无论有多少个,入度总和都是偶数。所以上面的公式,可以拆分为:
∵ ∑ i = 1 n d ( v i ) = 2 e ∴ ∑ i = 1 n d ( v i ) 为 偶 数 ∵ ∑ e v e n d ( v k )   为 偶 数 ∴ ∑ i = 1 n d ( v i ) − ∑ e v e n d ( v k ) 为 偶 数 ∵ ∑ o d d d ( v j ) = ∑ i = 1 n d ( v i ) − ∑ e v e n d ( v k ) ∴ ∑ o d d d ( v j ) 为 偶 数 \because \sum_{i=1}^{n}d(v_i)=2e \\ \therefore \sum_{i=1}^{n}d(v_i)为偶数\\ \because \sum_{even}d(v_k) \ 为偶数\\ \therefore \sum_{i=1}^{n}d(v_i)-\sum_{even}d(v_k)为偶数\\ \because \sum_{odd}d(v_j) = \sum_{i=1}^{n}d(v_i)-\sum_{even}d(v_k)\\ \therefore \sum_{odd}d(v_j) 为偶数 i=1nd(vi)=2ei=1nd(vi)evend(vk) i=1nd(vi)evend(vk)oddd(vj)=i=1nd(vi)evend(vk)oddd(vj)
  偶数个奇数相加才能是偶数,握手定理证明完毕。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

醒过来摸鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值