【学习笔记】《数据挖掘:理论与算法》CH5 支持向量机

支持向量机 Support Vector Machines

线性分类

在原始空间做一个映射,在新的空间中进行分类(线性分类器,分类的时候保持margin最大)

  1. Margin
    间隔:能够偏离的距离
    值越大,容错能力越强
    求解:2/|w|
  2. Support Vector
    正好卡住分界面的点
  3. 两者关系
    Support Vector决定移动的范围,范围的大小叫做Margin
  4. 目标
    • 把样本分对
      y i ( w ⋅ x i + b ) − 1 > = 0 y_i (w·x_i+b)- 1>= 0 yi(wxi+b)1>=0
    • 使Margin最大
      m i n 1 2 w T w min\frac{1}{2} w^T w min21wTw
  5. 例子
    在这里插入图片描述
  6. Soft Margin
    放宽约束条件(处理噪点)

非线性分类

  1. Feature Space
    映射后的空间 ,转变问题
    在这里插入图片描述
  2. Kernel Trick
    低维映射到高维(高维空间中容易分类),而高维空间中的操作等同于低维空间中的操作(高维空间操作复杂)
  3. String Kernel
    文本内容处理

实例:
在这里插入图片描述
资源
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值