阅读这篇之前如果对于层次softmax不清楚可以先看看http://124.222.190.191:8090/archives/word2vec-zhong-de-ha-fu-man-shu
再来阅读代码,你将会有意外收获
1.数据集
百度云网盘:链接:百度网盘 请输入提取码
提取码:4yla
–来自百度网盘超级会员V4的分享
2.代码
import numpy as np
from collections import deque
from huffman_tree import HuffmanTree
2.1数据处理代码
def _init_dict(min_count):
word_count_sum = 0
sentence_count = 0
word2id_dict = dict()
id2word_dict = dict()
wordid_frequency_dict = dict()
word_freq = dict()
for line in input_file:
line = line.strip().split()
word_count_sum +=len(line)
sentence_count +=1
for i,word in enumerate(line):
if i%1000000==0:
print (i,len(line))
if word_freq.get(word)==None:
word_freq[word] = 1
else:
word_freq[word] += 1
for i,word in enumerate(word_freq):
if i % 100000 == 0:
print(i, len(word_freq))
if word_freq[word]<min_count:
word_count_sum -= word_freq[word]
continue
word2id_dict[word] = len(word2id_dict)
id2word_dict[len(id2word_dict)] = word
wordid_frequency_dict[len(word2id_dict)-1] = word_freq[word]
word_count =len(word2id_dict)
return word2id_dict,id2word_dict,wordid_frequency_dict
word2id_dict,id2word_dict,wordid_frequency_dict = _init_dict(20)
def get_wordId_list():
input_file = open("./data/text8.txt", encoding="utf-8")
sentence = input_file.readline()
wordId_list = [] # 一句中的所有word 对应的 id
sentence = sentence.strip().split(' ')
for i,word in enumerate(sentence):
if i%1000000==0:
print (i,len(sentence))
try:
word_id = word2id_dict[word]
wordId_list.append(word_id)
except:
continue
return wordId_list
wordId_list = get_wordId_list()
2.2利用滑动窗口对句子依次滑动
def get_batch_pairs(batch_size,window_size,index,word_pairs_queue):
while len(word_pairs_queue) < batch_size:
for _ in range(1000):
if index == len(wordId_list):
index = 0
for i in range(max(index - window_size, 0), min(index + window_size + 1,len(wordId_list))):
wordId_w = wordId_list[index]
wordId_v = wordId_list[i]
if index == i: # 上下文=中心词 跳过
continue
word_pairs_queue.append((wordId_w, wordId_v))
index+=1
result_pairs = [] # 返回mini-batch大小的正采样对
for _ in range(batch_size):
result_pairs.append(word_pairs_queue.popleft())
return result_pairs
index = 0
word_pairs_queue = deque()
result_pairs = get_batch_pairs(32,3,index,word_pairs_queue)
2.3利用huffman树生成正负样本
huffman_tree = HuffmanTree(wordid_frequency_dict) # 霍夫曼树
huffman_pos_path, huffman_neg_path = huffman_tree.get_all_pos_and_neg_path()
def get_pairs(pos_pairs):
neg_word_pair = []
pos_word_pair = []
for pair in pos_pairs:
pos_word_pair += zip([pair[0]] * len(huffman_pos_path[pair[1]]), huffman_pos_path[pair[1]])
neg_word_pair += zip([pair[0]] * len(huffman_neg_path[pair[1]]), huffman_neg_path[pair[1]])
return pos_word_pair, neg_word_pair
pos_word_pair, neg_word_pair = get_pairs(result_pairs)
结果:
2.4模型
import torch
import torch.nn as nn
import torch.nn.functional as F
class SkipGramModel(nn.Module):
def __init__(self, emb_size, emb_dimension):
super(SkipGramModel, self).__init__()
self.emb_size = emb_size
self.emb_dimension = emb_dimension
self.w_embeddings = nn.Embedding(2*emb_size-1, emb_dimension, sparse=True)
self.v_embeddings = nn.Embedding(2*emb_size-1, emb_dimension, sparse=True)
self._init_emb()
def _init_emb(self):
initrange = 0.5 / self.emb_dimension
self.w_embeddings.weight.data.uniform_(-initrange, initrange)
self.v_embeddings.weight.data.uniform_(-0, 0)
def forward(self, pos_w, pos_v,neg_w, neg_v):
emb_w = self.w_embeddings(torch.LongTensor(pos_w)) # 转为tensor 大小 [ mini_batch_size * emb_dimension ]
neg_emb_w = self.w_embeddings(torch.LongTensor(neg_w))
emb_v = self.v_embeddings(torch.LongTensor(pos_v))
neg_emb_v = self.v_embeddings(torch.LongTensor(neg_v)) # 转换后大小 [ negative_sampling_number * mini_batch_size * emb_dimension ]
score = torch.mul(emb_w, emb_v).squeeze()
score = torch.sum(score, dim=1)
score = torch.clamp(score, max=10, min=-10)
score = F.logsigmoid(score)
neg_score = torch.mul(neg_emb_w, neg_emb_v).squeeze()
neg_score = torch.sum(neg_score, dim=1)
neg_score = torch.clamp(neg_score, max=10, min=-10)
neg_score = F.logsigmoid(-neg_score)
# L = log sigmoid (Xw.T * θv) + [log sigmoid (-Xw.T * θv)]
loss = -1 * (torch.sum(score) + torch.sum(neg_score))
return loss
def save_embedding(self, id2word, file_name):
embedding = self.w_embeddings.weight.data.cpu().numpy()
fout = open(file_name, 'w')
fout.write('%d %d\n' % (len(id2word), self.emb_dimension))
for wid, w in id2word.items():
e = embedding[wid]
e = ' '.join(map(lambda x: str(x), e))
fout.write('%s %s\n' % (w, e))
model = SkipGramModel(100, 10)
id2word = dict()
for i in range(100):
id2word[i] = str(i)
pos_w = [0, 0, 1, 1, 1]
pos_v = [1, 2, 0, 2, 3]
neg_w = [0, 0, 1, 1, 1]
neg_v = [54,55, 61, 71, 82]
model.forward(pos_w, pos_v, neg_w,neg_v)