内容来自MOOC《人工智能实践:Tensorflow笔记2》
八股搭建网络:我觉得是指按照固定模式搭建神经网络,八股只是呆板的意思,并不是按照八个步骤搭建。我们抨击的应该是八股取士制度,而不是八股文。
1.iris数据集
iris数据集:从sklearn包中导入iris数据集;去官网下载http://archive.ics.uci.edu/ml/datasets/Iris/
特征数:4,sepal length in cm 花萼长,sepal width in cm 花萼宽,petal length in cm 花瓣长,petal width in cm 花瓣宽
类别数:3,Iris Setosa狗尾鸢尾,Iris Versicolour杂色鸢尾,Iris Virginica弗吉尼亚鸢尾
这个图只是为了展示什么是花萼与花瓣,并不是鸢尾花
2.实现鸢尾花分类——方一
2.1 步骤
import模块
load数据集,打乱数据集顺序,将打乱后的数据集分为train与test
train与test的features与labels配对,并且给出batch大小
初始化权重与偏置 (神经网络为全连接, 输入层:4个神经元,隐藏层:3个神经元,输出层:3个神经元)
给出学习率、epoch大小
训练
计算每个epoch的训练集损失与测试集准确率 进行绘图
2.2 具体的训练过程
如120组数据,90组用于训练,30组用于测试
batch=30,则训练集分为3个batch,测试集为1个batch
epoch=3,进行3次循环
epoch1
--train_batch1
--train_batch2
--train_batch3
--test_batch1
epoch2
--train_batch1
--train_batch2
--train_batch3
--test_batch1
epoch3
--train_batch1
--train_batch2
--train_batch3
--test_batch1
2.3疑问
像train_db、test_db这种BatchDataset类只能通过循环展示或调用?
反正我目前没找到其他方法。如果直接输出print(train_db)是显示不出内容的。
2.4 代码
# -*- coding: UTF-8 -*-
# 利用鸢尾花数据集,实现前向传播、反向传播,可视化loss曲线
# 导入所需模块
import tensorflow as tf
from sklearn import datasets
from matplotlib import pyplot as plt
import numpy as np
# 导入数据,分别为输入特征和标签
x_data = datasets.load_iris().data
y_data = datasets.load_iris().target
# 随机打乱数据(因为原始数据是顺序的,顺序不打乱会影响准确率)
# seed: 随机数种子,是一个整数,当设置之后,每次生成的随机数都一样(为方便教学,以保每位同学结果一致)
np.random.seed(116) # 使用相同的seed,保证输入特征和标签一一对应
np.random.shuffle(x_data)
np.random.seed(116)
np.random.shuffle(y_data)
tf.random.set_seed(116)
# 将打乱后的数据集分割为训练集和测试集,训练集为前120行,测试集为后30行
x_train = x_data[:-30]
y_train = y_data[:-30]
x_test = x_data[-30:]
y_test = y_data[-30:]
# 转换x的数据类型,否则后面矩阵相乘时会因数据类型不一致报错
x_train = tf.cast(x_train, tf.float32)
x_test = tf.cast(x_test, tf.float32)
# from_tensor_slices函数使输入特征和标签值一一对应。(把数据集分批次,每个批次batch组数据)
train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)
# 生成神经网络的参数,4个输入特征故,输入层为4个输入节点;因为3分类,故输出层为3个神经元
# 用tf.Variable()标记参数可训练
# 使用seed使每次生成的随机数相同(方便教学,使大家结果都一致,在现实使用时不写seed)
w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1, seed=1))
b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1, seed=1))
lr = 0.1 # 学习率为0.1
train_loss_results = [] # 将每轮的loss记录在此列表中,为后续画loss曲线提供数据
test_acc = [] # 将每轮的acc记录在此列表中,为后续画acc曲线提供数据
epoch = 500 # 循环500轮
loss_all = 0 # 每轮分4个step,loss_all记录四个step生成的4个loss的和
# 训练部分
for epoch in range(epoch): #数据集级别的循环,每个epoch循环一次数据集
for step, (x_train, y_train) in enumerate(train_db): #batch级别的循环 ,每个step循环一个batch
with tf.GradientTape() as tape: # with结构记录梯度信息
y = tf.matmul(x_train, w1) + b1 # 神经网络乘加运算
y = tf.nn.softmax(y) # 使输出y符合概率分布(此操作后与独热码同量级,可相减求loss)
y_ = tf.one_hot(y_train, depth=3) # 将标签值转换为独热码格式,方便计算loss和accuracy
loss = tf.reduce_mean(tf.square(y_ - y)) # 采用均方误差损失函数mse = mean(sum(y-out)^2)
loss_all += loss.numpy() # 将每个step计算出的loss累加,为后续求loss平均值提供数据,这样计算的loss更准确
# 计算loss对各个参数的梯度
grads = tape.gradient(loss, [w1, b1])
# 实现梯度更新 w1 = w1 - lr * w1_grad b = b - lr * b_grad
w1.assign_sub(lr * grads[0]) # 参数w1自更新
b1.assign_sub(lr * grads[1]) # 参数b自更新
# 每个epoch,打印loss信息
print("Epoch {}, loss: {}".format(epoch, loss_all/4))
train_loss_results.append(loss_all / 4) # 将4个step的loss求平均记录在此变量中
loss_all = 0 # loss_all归零,为记录下一个epoch的loss做准备
# 测试部分
# total_correct为预测对的样本个数, total_number为测试的总样本数,将这两个变量都初始化为0
total_correct, total_number = 0, 0
for x_test, y_test in test_db:
# 使用更新后的参数进行预测
y = tf.matmul(x_test, w1) + b1
y = tf.nn.softmax(y)
pred = tf.argmax(y, axis=1) # 返回y中最大值的索引,即预测的分类
# 将pred转换为y_test的数据类型
pred = tf.cast(pred, dtype=y_test.dtype)
# 若分类正确,则correct=1,否则为0,将bool型的结果转换为int型
correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32)
# 将每个batch的correct数加起来
correct = tf.reduce_sum(correct)
# 将所有batch中的correct数加起来
total_correct += int(correct)
# total_number为测试的总样本数,也就是x_test的行数,shape[0]返回变量的行数
total_number += x_test.shape[0]
# 总的准确率等于total_correct/total_number
acc = total_correct / total_number
test_acc.append(acc)
print("Test_acc:", acc)
print("--------------------------")
# 绘制 loss 曲线
plt.title('Loss Function Curve') # 图片标题
plt.xlabel('Epoch') # x轴变量名称
plt.ylabel('Loss') # y轴变量名称
plt.plot(train_loss_results, label="$Loss$") # 逐点画出trian_loss_results值并连线,连线图标是Loss
plt.legend() # 画出曲线图标
plt.show() # 画出图像
# 绘制 Accuracy 曲线
plt.title('Acc Curve') # 图片标题
plt.xlabel('Epoch') # x轴变量名称
plt.ylabel('Acc') # y轴变量名称
plt.plot(test_acc, label="$Accuracy$") # 逐点画出test_acc值并连线,连线图标是Accuracy
plt.legend()
plt.show()
3.实现鸢尾花分类——方二
3.1 六步法
import
train, test
model=tf.keras.models.Sequential
model.compile
model.fit
model.summary
3.2 model=tf.keras.models.Sequential
model=tf.keras.models.Sequential([]) 定义神经层的类型、激活函数类型、正则化类型
拉直层 tf.keras.layers.Flatten() 将输入特征拉直变为一维数组
全连接层 tf.keras.layers.Dense(神经元个数,activation=激活函数, kernel_regularizer=正则化)
卷积层 tf.keras.layers.Conv2D(filters=卷积核个数,kernel_size=卷积核尺寸, strides=卷积步长,padding="valid" or "same")
LSTM层 tf.keras.layers.LSTM()
activation = 'relu', 'softmax', 'sigmoid', 'tanh'
kernel_regularizer = tf.keras.regularizers.l1(), tf.keras.regularizers.l2()
3.3 model.compile
model.compile(optimizer=优化器,loss=损失函数,metrics=["准确率"]) 定义优化器 损失函数 评测指标
优化器:
'sgd' or tf.optimizers.SGD(lr=学习率, decay=学习率衰减率, momentum=动量参数)
'adagrad' or tf.keras.optimizers.Adagrad(lr=学习率, decay=学习率衰减率)
'adadelta' or tf.keras.optimizers.Adadelta(lr=学习率, decay=学习率衰减率)
'adam' or tf.keras.optimizers.Adam (lr=学习率, decay=学习率衰减率)
损失函数:
'mse' or tf.keras.losses.MeanSquaredError()
'sparse_categorical_crossentropy' or tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False)
from_logits:原始输出是否经过概率分布, from_logits=False表示经过概率分布,from_logits=True表示原始输出
评测指标:
'accuracy':y_和y 都是数值,如y_=[1] y=[1]。
'categorical_accuracy':y_和y 是以独热码和概率分布表示。 如y_=[0, 1, 0], y=[0.256, 0.695, 0.048]
'sparse_ categorical_accuracy':y_和y是以数值和概率分布表示。如y_=[1], y=[0.256, 0.695, 0.048]
3.4 疑问
以下是我百度到的,可能不对
binary_crossentropy 二分类交叉熵,使用sigmoid激活函数
categorical_crossentropy 多分类交叉熵,使用softmax激活函数得到输出的概率分布,y_和y 以独热码和概率分布表示
sparse_categorical_crossentrop 稀疏多分类交叉熵,使用softmax激活函数得到输出的概率分布,y_和y是以数值和概率分布表示
3.5 model.fit
进行训练与测试,定义batch,epoch
model.fit(训练集的输入特征,训练集的标签,batch_size= ,epochs= ,validation_data = (测试集的输入特征,测试集的标签),validataion_split = 从测试集划分多少比例给训练集,validation_freq = 多少次epoch测试一次)
validation_data与validataion_split都是定义测试集,只能选择一个
3.6 model.summary
model.summary() 打印网络结构与参数统计
3.7 代码
import tensorflow as tf
from sklearn import datasets
import numpy as np
x_train = datasets.load_iris().data
y_train = datasets.load_iris().target
np.random.seed(116)
np.random.shuffle(x_train)
np.random.seed(116)
np.random.shuffle(y_train)
tf.random.set_seed(116)
model = tf.keras.models.Sequential([
tf.keras.layers.Dense(3, activation='softmax', kernel_regularizer=tf.keras.regularizers.l2())])
model.compile(optimizer=tf.keras.optimizers.SGD(lr=0.1),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
metrics=['sparse_categorical_accuracy'])
model.fit(x_train, y_train, batch_size=32, epochs=500, validation_split=0.2, validation_freq=20)
model.summary()
4.实现鸢尾花分类——方三
同方二,只是方法三使用继承自Model的类来定义神经网络,而方法二使用了Sequential函数来定义神经网络
4.1 步骤
class IrisModel(Model):
def __init__(self):
#定义网络结构
super(IrisModel, self).__init__()
self.d1 = Dense(3, activation='sigmoid', kernel_regularizer=tf.keras.regularizers.l2())
def call(self, x):
#调用网络结构块,实现前向传播
y = self.d1(x)
return y
model = IrisModel()
4.2 代码
import tensorflow as tf
from tensorflow.keras.layers import Dense
from tensorflow.keras import Model
from sklearn import datasets
import numpy as np
x_train = datasets.load_iris().data
y_train = datasets.load_iris().target
np.random.seed(116)
np.random.shuffle(x_train)
np.random.seed(116)
np.random.shuffle(y_train)
tf.random.set_seed(116)
class IrisModel(Model):
def __init__(self):
super(IrisModel, self).__init__()
self.d1 = Dense(3, activation='softmax', kernel_regularizer=tf.keras.regularizers.l2())
def call(self, x):
y = self.d1(x)
return y
model = IrisModel()
model.compile(optimizer=tf.keras.optimizers.SGD(lr=0.1),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
metrics=['sparse_categorical_accuracy'])
model.fit(x_train, y_train, batch_size=32, epochs=500, validation_split=0.2, validation_freq=20)
model.summary()
5. 对比
5.1 方二与方三
方二
model = tf.keras.models.Sequential()
方三
定义继承自tf.keras.Model的irisModel类
实例化 model = IrisModel()
5.2 三种方法对比
三种方法都调用了tensorflow框架,方一代码虽多,但展示了神经网络学习的比较详细过程。方二 方三进一步使用了封装好的函数,使得代码很少,但没有体现神经网络学习的比较详细过程。
当然如果要更详细的过程,我就不用tensorflow了,使用numpy自己写代码。
本文通过三种不同方法,包括手动搭建神经网络、使用Sequential模型及自定义Model类,详细介绍了如何利用TensorFlow对鸢尾花数据集进行分类,展示了神经网络的学习过程。
1271

被折叠的 条评论
为什么被折叠?



