Tensorflow2.x实现Iris数据集

Tensorflow2.x实现Iris数据集

Iris数据集介绍

Iris数据集记录的是鸢尾花的分类,总共150组数据,输入特征有4个,输出结果有3类

使用tf.Keras实现

第一步:导包

import tensorflow as tf
from tensorflow.keras.layers import Dense
from tensorflow.keras import Model
from sklearn import datasets
import numpy as np

第二步:载入数据集

x_train = datasets.load_iris().data
y_train = datasets.load_iris().target

第三步:打乱数据集

np.random.seed(1)
np.random.shuffle(x_train)
np.random.seed(1)
np.random.shuffle(y_train)
tf.random.set_seed(1)

第四步:创建网络(方法一)

model = tf.keras.models.Sequential([
    tf.keras.layers.Dense(3, activation=tf.keras.activations.softmax,
                          kernel_regularizer=tf.keras.regularizers.l2())
])

第四步:创建网络(方法二)

class IrisModel(Model):
    def __init__(self):
        super(IrisModel, self).__init__()
        self.d1 = Dense(3, activation='sigmoid', kernel_regularizer=tf.keras.regularizers.l2())

    def call(self, x):
        y = self.d1(x)
        return y

model = IrisModel()

第五步:配置模型

model.compile(optimizer=tf.keras.optimizers.SGD(lr=0.1),
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])

第六步:训练模型

model.fit(x_train, y_train, batch_size=32, epochs=500, validation_split=0.2, validation_freq=20)

第七步:打印网络结构

model.summary()

全部代码

import tensorflow as tf
from tensorflow.keras.layers import Dense
from tensorflow.keras import Model
from sklearn import datasets
import numpy as np

x_train = datasets.load_iris().data
y_train = datasets.load_iris().target

np.random.seed(116)
np.random.shuffle(x_train)
np.random.seed(116)
np.random.shuffle(y_train)
tf.random.set_seed(116)


class IrisModel(Model):
    def __init__(self):
        super(IrisModel, self).__init__()
        self.d1 = Dense(3, activation='sigmoid', kernel_regularizer=tf.keras.regularizers.l2())

    def call(self, x):
        y = self.d1(x)
        return y


model = IrisModel()

model.compile(optimizer=tf.keras.optimizers.SGD(lr=0.1),
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])

model.fit(x_train, y_train, batch_size=32, epochs=500, validation_split=0.2, validation_freq=20)
model.summary()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值