倪震华教授版《振动力学》学习(一)

本文深入探讨了振动分析的各个方面,包括简谐振动、傅里叶级数和积分、单自由度系统以及强迫振动的响应。重点介绍了模态参数识别、能量法和阻尼对振动的影响。同时,讲解了不同类型的阻尼和振动类型,如线性和非线性振动,并阐述了在实际工程中的应用,如机械阻抗和系统响应谱。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

绪论

1. 三种问题

系统物理参数:M K C
系统模态参数:固有频率与振型
激励:输入
响应:输出
已知系统、激励,求响应。
已知激励、响应,求系统。物理参数识别:识别系统的M K C;模态参数识别/实验模态分析:识别系统的固有频率与振型
已知系统、响应,求激励。
我最近对第二种很感兴趣,所以买了本《模态分析理论与应用》来看。

2. 自由度数

自由度数是指描述系统一切部位在任何瞬时运动所需要的坐标数

3. 分布参数系统与集中参数系统

取决于系统物理参数是均匀分布还只在某一处或几处集中

4. 振动种类

线性振动、非线性振动:振动方程是线性微分方程还是非线性微分方程

第一章 简谐振动与频谱分析

1. 简谐振动及其合成

简谐振动的位移响应用简谐函数表示

两个同频率的简谐函数的合成仍是简谐函数,且保持原频率
两个频率接近的简谐函数的合成是一个拍,红色部分是其包络线

我认为频率比不论是有理数还是无理数,其合成函数都是一个周期函数

2. 傅里叶级数

简谐函数表示

复数表示

3. 傅里叶积分

非周期函数
一段周期函数就是非周期函数,因为他只在一段时间内是周期函数,其余时间为0。
将该非周期函数当作周期为无穷的函数后,只要x(t)满足狄利克雷条件且绝对可积,即可变换到频域。

傅里叶级数用于:时间无穷的连续周期函数
傅里叶积分用于:时间无穷的连续非周期函数
而我们平时软件处理的是时间有限的离散函数,利用DFT可以将其变换到频域
硬件处理的是时间有限的连续函数,对于硬件如何处理我没接触过

4. 脉冲力

δ函数:t=0时为∞,其余时刻为0
脉冲力:作用时间无限短,而具有有限冲量的力。作用空间集中,作用时间集中。
集中力:作用空间集中。
脉冲力与集中力可由δ函数描述。

第二章 单自由度系统

1.常微分方程的解



前面已说过,同频率的简谐函数可以合成一个简谐函数

2.能量法

阻尼导致机械运转时产生热量,消耗系统能量,对于可看作能量守恒即不计阻尼的系统,可以用能量法求解
考虑惯性元件的动能与弹性元件的势能

3. 瑞利法

同时考虑弹性元件的动能

4.等效质量、等效刚度

等效刚度:系统在坐标方向产生单位位移而需要在坐标方向上施加的力
等效质量:系统在坐标方向产生单位加速度而需要在坐标方向上施加的力
其实就是求系统的刚度与质量,系统可能包含多个弹性元件、多个惯性元件

5. 有粘性阻尼的自由振动

阻尼即阻力:摩擦阻尼、电磁阻尼、介质阻尼、结构阻尼等
粘性阻尼/粘滞阻尼Pd:在流体中低速运动或沿润滑表面滑动的物体,通常认为受到粘性阻尼,其与相对速度成正比
Pd=c*v,c为(粘性)阻尼系数


n为衰减系数,ζ为相对阻尼系数

讨论其根,会有三种形式,过阻尼、欠阻尼、临界阻尼
注:可直接写出特征方程或者将带入得到特征方程,求解特征方程可得到其根,再分别讨论


ζ也称阻尼比

临界阻尼Ccr只取决于系统本身的质量与刚度

欠阻尼系统
两根为共轭复数
阻尼固有频率

6. 常微分方程的解

根据特征根可写出微分方程的解
根据特征根可判断系统的稳定性,特征根在右半平面则振动不是稳定的

过阻尼

临界阻尼

欠阻尼

第三章 单自由度系统的强迫振动

激励:直接作用到结构上的力、支撑的运动
简谐力激励时系统的响应包括:初始条件引起的自由振动、伴随强迫振动的自由振动、等幅的稳态强迫振动。如果初始条件为0,那么也就不存在第一种振动了。自由振动会逐渐衰减,称之为其响应为瞬态响应,最终只剩下强迫振动,称之为稳态响应。

1.振幅放大因子

又要研究微分方程的解了,哈哈

频率比

振幅放大因子,共振时的振幅放大因子也称品质因子Q

共振峰:β-λ曲线在λ=1附近的曲线
Q反映了系统阻尼大小与共振峰的陡峭程度

2.用旋转矢量来表示稳态振动

3.机械阻抗

简谐激振时复数形式的输入与输出之比。其倒数为幅频响应函数或频率响应函数,也叫导纳
位移阻抗:动刚度 
位移导纳:动柔度
速度阻抗:简称阻抗
加速度阻抗:视在质量

4. 微分方程


这是无激励时讨论的两个方程

周期激励时讨论的两个方程


计算下面问题的通解


方1:

计算方程1的通解
方程2的特解
两个解之和即为通解,再将初始条件带进去,即为最终结果
方2:

计算方程1的通解,再将初始条件带进去
计算方程2的通解,再将初始条件带进去
两个解之和即为通解,即为最终结果

观察最终结果,会发现有四项,前两项为初始条件引起的自由振动,第三项为自由伴随振动,第四项为稳态强迫振动
由于该方程无阻尼项,自由振动是不会减小的


对于有阻尼的系统,两种自由振动前面就都会乘一个衰减项了

5. 迟滞回线

两种迟滞回线
粘性阻尼Pd与x绘制的曲线,其面积为一周期运动消耗的能量,当消耗的能量与振幅平方呈正比时,迟滞回线为椭圆
应力与应变绘制的曲线,其面积为一周期运动消耗的能量,当消耗的能量与应变幅度平方呈正比时,迟滞回线为椭圆

还有两种学过的闭合的曲线:
磁滞回线,B与H绘制的曲线
本构曲线,应力与应变绘制的曲线

6. 阻尼

粘性阻尼,后三个为非线性阻尼,他们是外面的介质对结构产生的阻力
干摩擦阻尼/库伦阻尼
低粘度流体阻尼
指数阻尼

结构阻尼/迟滞阻尼:材料内摩擦
结构阻尼比位移在相位上超前Pi/2,大小与位移成正比

称为复刚度

https://mp.weixin.qq.com/s/XCT14gJvIdVVI_1KFTg0lQ

7. 周期激励与非周期激励

周期激励可看作多个简谐激励的合成,施加周期激励相对于分别施加简谐激励后的响应和
非周期激励可看作多个脉冲激励的积分,施加非周期激励相对于分别施加脉冲激励后的响应和
杜哈梅积分:任意激励的响应可看作所有脉冲响应的和
Borel定理:线性系统对任何激励的响应等于其脉冲响应与激励的卷积

8. 传递函数、复频响应函数、脉冲响应函数

传递函数:系统输出的拉氏变换与输入拉氏变换之比
复频响应函数:也称频响函数,频率响应函数 FRF。系统输出的傅氏变换与输入傅氏变换之比
脉冲响应函数:脉冲力激励时的时域响应函数

9. 响应谱

最大响应值与系统的关系
最大响应值与激励的某一参数的关系

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值