结构动力学笔记01——单自由度系统振动

  • 写在前面

对于一个系统,其基本建模分析方法和步骤为:
在这里插入图片描述

  不同学科面对的物理模型不同,但是其背后对应的数学模型可能有很多相似之处。对于具有输入输出的物理模型,从时域的角度来看,一般都可以分为一阶系统、二阶系统、高阶系统…对应的数学模型为以时间t为自变量的常微分方程(组)。当从时域的角度研究问题时,核心就在于对常微分方程(组)的求解以及对其解的物理意义的理解。

  • 模型归纳(时域分析法)
    在这里插入图片描述
    无阻尼自由振动

在这里插入图片描述

有阻尼自由振动

在这里插入图片描述

有阻尼受迫振动


无阻尼自由振动 有阻尼自由振动 有阻尼受迫振动(简谐激励)
物理模型 一阶系统(零输入) 二阶系统(零输入) 二阶系统(简谐输入)
数学模型 m x ′ ′ ( t ) + k x ( t ) = 0 mx''(t)+kx(t)=0 mx(t)+kx(t)=0
x ′ ′ ( t ) + ω n 2 x ( t ) = 0 x''(t)+\omega_n^2x(t)=0 x(t)+ωn2x(t)=0
一阶齐次常系数线性微分方程
m x ′ ′ ( t ) + c x ′ ( t ) + k x ( t ) = 0 mx''(t)+cx'(t)+kx(t)=0 mx(t)+cx(t)+kx(t)=0
x ′ ′ ( t ) + 2 ξ ω n x ′ ( t ) + ω n 2 x ( t ) = 0 x''(t)+2\xi\omega_nx'(t)+\omega_n^2x(t)=0 x(t)+2ξωnx(t)+ωn2x(t)=0
二阶齐次常系数线性微分方程
m x ′ ′ ( t ) + c x ′ ( t ) + k x ( t ) = F 0 s i n ω ˉ t mx''(t)+cx'(t)+kx(t)=F_0sin\bar{\omega}t mx(t)+cx(t)+kx(t)=F0sinωˉt
x ′ ′ ( t ) + 2 ξ ω n x ′ ( t ) + ω n 2 x ( t ) = F 0 m s i n ω ˉ t x''(t)+2\xi\omega_nx'(t)+\omega_n^2x(t)=\frac{F_0}{m}sin\bar{\omega}t x(t)+2ξωnx
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值