- 写在前面
对于一个系统,其基本建模分析方法和步骤为:
不同学科面对的物理模型不同,但是其背后对应的数学模型可能有很多相似之处。对于具有输入输出的物理模型,从时域的角度来看,一般都可以分为一阶系统、二阶系统、高阶系统…对应的数学模型为以时间t为自变量的常微分方程(组)。当从时域的角度研究问题时,核心就在于对常微分方程(组)的求解以及对其解的物理意义的理解。
- 模型归纳(时域分析法)
无阻尼自由振动
无阻尼自由振动 | 有阻尼自由振动 | 有阻尼受迫振动(简谐激励) | |
---|---|---|---|
物理模型 | 一阶系统(零输入) | 二阶系统(零输入) | 二阶系统(简谐输入) |
数学模型 | m x ′ ′ ( t ) + k x ( t ) = 0 mx''(t)+kx(t)=0 mx′′(t)+kx(t)=0 即 x ′ ′ ( t ) + ω n 2 x ( t ) = 0 x''(t)+\omega_n^2x(t)=0 x′′(t)+ωn2x(t)=0 一阶齐次常系数线性微分方程 |
m x ′ ′ ( t ) + c x ′ ( t ) + k x ( t ) = 0 mx''(t)+cx'(t)+kx(t)=0 mx′′(t)+cx′(t)+kx(t)=0 即 x ′ ′ ( t ) + 2 ξ ω n x ′ ( t ) + ω n 2 x ( t ) = 0 x''(t)+2\xi\omega_nx'(t)+\omega_n^2x(t)=0 x′′(t)+2ξωnx′(t)+ωn2x(t)=0 二阶齐次常系数线性微分方程 |
m x ′ ′ ( t ) + c x ′ ( t ) + k x ( t ) = F 0 s i n ω ˉ t mx''(t)+cx'(t)+kx(t)=F_0sin\bar{\omega}t mx′′(t)+cx′(t)+kx(t)=F0sinωˉt 即 x ′ ′ ( t ) + 2 ξ ω n x ′ ( t ) + ω n 2 x ( t ) = F 0 m s i n ω ˉ t x''(t)+2\xi\omega_nx'(t)+\omega_n^2x(t)=\frac{F_0}{m}sin\bar{\omega}t x′′(t)+2ξωnx |