结构动力学笔记01——单自由度系统振动

  • 写在前面

对于一个系统,其基本建模分析方法和步骤为:
在这里插入图片描述

  不同学科面对的物理模型不同,但是其背后对应的数学模型可能有很多相似之处。对于具有输入输出的物理模型,从时域的角度来看,一般都可以分为一阶系统、二阶系统、高阶系统…对应的数学模型为以时间t为自变量的常微分方程(组)。当从时域的角度研究问题时,核心就在于对常微分方程(组)的求解以及对其解的物理意义的理解。

  • 模型归纳(时域分析法)
    在这里插入图片描述
    无阻尼自由振动

在这里插入图片描述

有阻尼自由振动

在这里插入图片描述

有阻尼受迫振动


无阻尼自由振动有阻尼自由振动有阻尼受迫振动(简谐激励)
物理模型一阶系统(零输入)二阶系统(零输入)二阶系统(简谐输入)
数学模型 m x ′ ′ ( t ) + k x ( t ) = 0 mx''(t)+kx(t)=0 mx(t)+kx(t)=0
x ′ ′ ( t ) + ω n 2 x ( t ) = 0 x''(t)+\omega_n^2x(t)=0 x(t)+ωn2x(t)=0
一阶齐次常系数线性微分方程
m x ′ ′ ( t ) + c x ′ ( t ) + k x ( t ) = 0 mx''(t)+cx'(t)+kx(t)=0 mx(t)+cx(t)+kx(t)=0
x ′ ′ ( t ) + 2 ξ ω n x ′ ( t ) + ω n 2 x ( t ) = 0 x''(t)+2\xi\omega_nx'(t)+\omega_n^2x(t)=0 x(t)+2ξωnx(t)+ωn2x(t)=0
二阶齐次常系数线性微分方程
m x ′ ′ ( t ) + c x ′ ( t ) + k x ( t ) = F 0 s i n ω ˉ t mx''(t)+cx'(t)+kx(t)=F_0sin\bar{\omega}t mx(t)+cx(t)+kx(t)=F0sinωˉt
x ′ ′ ( t ) + 2 ξ ω n x ′ ( t ) + ω n 2 x ( t ) = F 0 m s i n ω ˉ t x''(t)+2\xi\omega_nx'(t)+\omega_n^2x(t)=\frac{F_0}{m}sin\bar{\omega}t x(t)+2ξωnx(t)+ωn2x(t)=mF0sinωˉt
二阶齐次常系数线性微分方程
求解 x ( t ) = A s i n ( ω n t + ϕ ) x(t)=Asin(\omega_nt+\phi) x(t)=Asin(ωnt+ϕ) x ( t ) = A e − ξ ω n t s i n ( ω d t + ϕ ) x(t)=Ae^{-\xi\omega_nt}sin(\omega_dt+\phi) x(t)=Aeξωntsin(ωdt+ϕ) x ( t ) = x c ( t ) + x p ( t ) x(t)=x_c(t)+x_p(t) x(t)=xc(t)+xp(t)
特性分析固有频率 ω n = k m \omega_n=\sqrt{\frac km} ωn=mk
相位 t a n ϕ = x ( 0 ) ω n x ′ ( 0 ) tan\phi=\frac{x(0)\omega_n}{x'(0)} tanϕ=x(0)x(0)ωn
自然频率 ω d = 1 − ξ 2 ω n \omega_d=\sqrt{1-\xi^2}\omega_n ωd=1ξ2 ωn
阻尼比 ξ = c 2 m ω n \xi=\frac{c}{2m\omega_n} ξ=2mωnc
对数衰减率 δ = l n x 1 x 2 = 2 π ξ 1 − ξ 2 \delta=ln{\frac{x_1}{x_2}}=\frac{2\pi\xi}{\sqrt{1-\xi^2}} δ=lnx2x1=1ξ2 2πξ
通解\齐次解\瞬态解:
x c = A e − ξ ω n t s i n ( ω d t + ϕ ) x_c=Ae^{-\xi\omega_nt}sin(\omega_dt+\phi) xc=Aeξωntsin(ωdt+ϕ)
特解\非齐次解\稳态解:
x p = F 0 / k ( 1 − β 2 ) 2 + ( 2 ξ β ) 2 s i n ( ω ˉ t − ϕ ) x_p=\frac{F_0/k}{\sqrt{(1-\beta^2)^2+(2\xi\beta)^2}}sin(\bar{\omega}t-\phi) xp=(1β2)2+(2ξβ)2 F0/ksin(ωˉtϕ)
共振频率 ω ˉ = ω n 1 − 2 ξ 2 \bar{\omega}=\omega_n\sqrt{1-2\xi^2} ωˉ=ωn12ξ2
其中 β = ω ˉ ω n \beta=\frac{\bar{\omega}}{\omega_n} β=ωnωˉ,为频率比
  • 任意激励受迫振动求解

①卷积积分法
将载荷(输入) F ( t ) F(t) F(t) 看成是一系列冲量(输入)微元 F ( τ ) d τ F(\tau)d\tau F(τ)dτ 之和,冲量微元引起系统响应微元 d x = F ( τ ) h ( t − τ ) d τ dx=F(\tau)h(t-\tau)d\tau dx=F(τ)h(tτ)dτ.
其中 h ( t − τ ) = 1 m ω d e − ξ ω n ( t − τ ) s i n ω d ( t − τ ) h(t-\tau)=\frac{1}{m\omega_d}e^{-\xi\omega_n(t-\tau)}sin\omega_d(t-\tau) h(tτ)=mωd1eξωn(tτ)sinωd(tτ) ,为单位冲击函数 δ ( t − τ ) \delta(t-\tau) δ(tτ) 的响应 (可通过数学推导得出), F ( τ ) F(\tau) F(τ) 在此处充当 δ ( t − τ ) \delta(t-\tau) δ(tτ) 的幅值作用
叠加原理,系统总响应为 x ( t ) = ∫ 0 t F ( τ ) h ( t − τ ) d τ x(t)=\int^t_0F(\tau)h(t-\tau)d\tau x(t)=0tF(τ)h(tτ)dτ.
在这里插入图片描述
一般情况: x ( t ) = 1 m ω d ∫ 0 t F ( τ ) e − ξ ω n ( t − τ ) s i n ω d ( t − τ ) d τ x(t)=\frac{1}{m\omega_d}\int^t_0F(\tau)e^{-\xi\omega_n(t-\tau)}sin\omega_d(t-\tau)d\tau x(t)=mωd10tF(τ)eξωn(tτ)sinωd(tτ)dτ
忽略阻尼: x ( t ) = 1 m ω n ∫ 0 t F ( τ ) s i n ω n ( t − τ ) d τ x(t)=\frac{1}{m\omega_n}\int^t_0F(\tau)sin\omega_n(t-\tau)d\tau x(t)=mωn10tF(τ)sinωn(tτ)dτ
  这个方法将不规则的连续输入离散化,运用微元的方法,再巧妙地引入了冲击函数 δ ( t ) \delta(t) δ(t),从而可以写出每一个微元状态的表达式,最后叠加在一起,得到整个的输出。
  从数学变换的理解, F ( τ ) , 0 < τ < t F(\tau),0<\tau<t F(τ)0<τ<t 是要转换的函数(充当采样样品作用),而 h ( t ) h(t) h(t) 是核函数(充当采样探针的作用),于是就用函数 h ( t ) h(t) h(t) 对函数 F ( τ ) F(\tau) F(τ) 0 < τ < t 0<\tau<t 0<τ<t 的每一处 τ \tau τ 进行采样,采样过程理解为,用 F ( τ ) F(\tau) F(τ) 的函数值对 h ( t − τ ) h(t-\tau) h(tτ) 的幅值进行调制(即二者相乘),采样时间间隔为 d τ d\tau dτ ,所以任意一点 τ \tau τ 处的采样值为 F ( τ ) h ( t − τ ) d τ F(\tau)h(t-\tau)d\tau F(τ)h(tτ)dτ ,所以总采样值(即最后总的变换结果)即为 ∫ 0 t F ( τ ) h ( t − τ ) d τ \int^t_0F(\tau)h(t-\tau)d\tau 0tF(τ)h(tτ)dτ。因此,我们就可以把卷积过程看作是采样探针函数在样品函数取值范围内,对样品函数连续扫描并求和的过程
②拉普拉斯变换法(略)

cda备考学习学习笔记——基础知识篇(二)主要涉及了计算机科学与技术领域的基本概念和知识。 首先,它介绍了计算机网络的基础知识。网络是将多台计算机通过通信链路连接起来,使它们能够相互通信和共享资源的系统笔记中详细介绍了网络的组成、拓扑结构和通信协议等重要内容。 其次,笔记还解释了计算机系统的基本组成。计算机系统由硬件和软件两部分组成,其中硬件包括中央处理器、存储器、输入输出设备等,而软件则分为系统软件和应用软件。笔记详细介绍了各种硬件和软件的功能和作用。 此外,笔记还对数据库管理系统进行了介绍。数据库管理系统是一种用于管理和组织数据的软件系统,它能够实现数据的存储、检索和更新等操作。笔记中详细介绍了数据库的概念、结构和操作等内容。 最后,笔记还包括了算法和数据结构的基础知识。算法是解决问题的一系列步骤和规则,而数据结构则是组织和存储数据的方式。笔记中介绍了常用的算法和数据结构,如排序算法、树和图等。 总之,通过学习CDA备考学习笔记中的基础知识篇(二),我们能够更好地理解计算机网络、计算机系统、数据库管理系统以及算法和数据结构等相关概念和知识。这些基础知识对于我们深入研究计算机科学与技术领域是非常重要的,也为我们日后的学习和工作奠定了坚实的基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值