- 写在前面
对于一个系统,其基本建模分析方法和步骤为:
不同学科面对的物理模型不同,但是其背后对应的数学模型可能有很多相似之处。对于具有输入输出的物理模型,从时域的角度来看,一般都可以分为一阶系统、二阶系统、高阶系统…对应的数学模型为以时间t为自变量的常微分方程(组)。当从时域的角度研究问题时,核心就在于对常微分方程(组)的求解以及对其解的物理意义的理解。
- 模型归纳(时域分析法)
无阻尼自由振动
无阻尼自由振动 | 有阻尼自由振动 | 有阻尼受迫振动(简谐激励) | |
---|---|---|---|
物理模型 | 一阶系统(零输入) | 二阶系统(零输入) | 二阶系统(简谐输入) |
数学模型 |
m
x
′
′
(
t
)
+
k
x
(
t
)
=
0
mx''(t)+kx(t)=0
mx′′(t)+kx(t)=0 即 x ′ ′ ( t ) + ω n 2 x ( t ) = 0 x''(t)+\omega_n^2x(t)=0 x′′(t)+ωn2x(t)=0 一阶齐次常系数线性微分方程 |
m
x
′
′
(
t
)
+
c
x
′
(
t
)
+
k
x
(
t
)
=
0
mx''(t)+cx'(t)+kx(t)=0
mx′′(t)+cx′(t)+kx(t)=0 即 x ′ ′ ( t ) + 2 ξ ω n x ′ ( t ) + ω n 2 x ( t ) = 0 x''(t)+2\xi\omega_nx'(t)+\omega_n^2x(t)=0 x′′(t)+2ξωnx′(t)+ωn2x(t)=0 二阶齐次常系数线性微分方程 |
m
x
′
′
(
t
)
+
c
x
′
(
t
)
+
k
x
(
t
)
=
F
0
s
i
n
ω
ˉ
t
mx''(t)+cx'(t)+kx(t)=F_0sin\bar{\omega}t
mx′′(t)+cx′(t)+kx(t)=F0sinωˉt 即 x ′ ′ ( t ) + 2 ξ ω n x ′ ( t ) + ω n 2 x ( t ) = F 0 m s i n ω ˉ t x''(t)+2\xi\omega_nx'(t)+\omega_n^2x(t)=\frac{F_0}{m}sin\bar{\omega}t x′′(t)+2ξωnx′(t)+ωn2x(t)=mF0sinωˉt 二阶非齐次常系数线性微分方程 |
求解 | x ( t ) = A s i n ( ω n t + ϕ ) x(t)=Asin(\omega_nt+\phi) x(t)=Asin(ωnt+ϕ) | x ( t ) = A e − ξ ω n t s i n ( ω d t + ϕ ) x(t)=Ae^{-\xi\omega_nt}sin(\omega_dt+\phi) x(t)=Ae−ξωntsin(ωdt+ϕ) | x ( t ) = x c ( t ) + x p ( t ) x(t)=x_c(t)+x_p(t) x(t)=xc(t)+xp(t) |
特性分析 | 固有频率
ω
n
=
k
m
\omega_n=\sqrt{\frac km}
ωn=mk 相位 t a n ϕ = x ( 0 ) ω n x ′ ( 0 ) tan\phi=\frac{x(0)\omega_n}{x'(0)} tanϕ=x′(0)x(0)ωn | 自然频率
ω
d
=
1
−
ξ
2
ω
n
\omega_d=\sqrt{1-\xi^2}\omega_n
ωd=1−ξ2ωn 阻尼比 ξ = c 2 m ω n \xi=\frac{c}{2m\omega_n} ξ=2mωnc 对数衰减率 δ = l n x 1 x 2 = 2 π ξ 1 − ξ 2 \delta=ln{\frac{x_1}{x_2}}=\frac{2\pi\xi}{\sqrt{1-\xi^2}} δ=lnx2x1=1−ξ22πξ | 通解\齐次解\瞬态解: x c = A e − ξ ω n t s i n ( ω d t + ϕ ) x_c=Ae^{-\xi\omega_nt}sin(\omega_dt+\phi) xc=Ae−ξωntsin(ωdt+ϕ) 特解\非齐次解\稳态解: x p = F 0 / k ( 1 − β 2 ) 2 + ( 2 ξ β ) 2 s i n ( ω ˉ t − ϕ ) x_p=\frac{F_0/k}{\sqrt{(1-\beta^2)^2+(2\xi\beta)^2}}sin(\bar{\omega}t-\phi) xp=(1−β2)2+(2ξβ)2F0/ksin(ωˉt−ϕ) 共振频率 ω ˉ = ω n 1 − 2 ξ 2 \bar{\omega}=\omega_n\sqrt{1-2\xi^2} ωˉ=ωn1−2ξ2 其中 β = ω ˉ ω n \beta=\frac{\bar{\omega}}{\omega_n} β=ωnωˉ,为频率比 |
- 任意激励受迫振动求解
①卷积积分法
将载荷(输入)
F
(
t
)
F(t)
F(t) 看成是一系列冲量(输入)微元
F
(
τ
)
d
τ
F(\tau)d\tau
F(τ)dτ 之和,冲量微元引起系统响应微元
d
x
=
F
(
τ
)
h
(
t
−
τ
)
d
τ
dx=F(\tau)h(t-\tau)d\tau
dx=F(τ)h(t−τ)dτ.
其中
h
(
t
−
τ
)
=
1
m
ω
d
e
−
ξ
ω
n
(
t
−
τ
)
s
i
n
ω
d
(
t
−
τ
)
h(t-\tau)=\frac{1}{m\omega_d}e^{-\xi\omega_n(t-\tau)}sin\omega_d(t-\tau)
h(t−τ)=mωd1e−ξωn(t−τ)sinωd(t−τ) ,为单位冲击函数
δ
(
t
−
τ
)
\delta(t-\tau)
δ(t−τ) 的响应 (可通过数学推导得出),
F
(
τ
)
F(\tau)
F(τ) 在此处充当
δ
(
t
−
τ
)
\delta(t-\tau)
δ(t−τ) 的幅值作用
由叠加原理,系统总响应为
x
(
t
)
=
∫
0
t
F
(
τ
)
h
(
t
−
τ
)
d
τ
x(t)=\int^t_0F(\tau)h(t-\tau)d\tau
x(t)=∫0tF(τ)h(t−τ)dτ.
一般情况:
x
(
t
)
=
1
m
ω
d
∫
0
t
F
(
τ
)
e
−
ξ
ω
n
(
t
−
τ
)
s
i
n
ω
d
(
t
−
τ
)
d
τ
x(t)=\frac{1}{m\omega_d}\int^t_0F(\tau)e^{-\xi\omega_n(t-\tau)}sin\omega_d(t-\tau)d\tau
x(t)=mωd1∫0tF(τ)e−ξωn(t−τ)sinωd(t−τ)dτ
忽略阻尼:
x
(
t
)
=
1
m
ω
n
∫
0
t
F
(
τ
)
s
i
n
ω
n
(
t
−
τ
)
d
τ
x(t)=\frac{1}{m\omega_n}\int^t_0F(\tau)sin\omega_n(t-\tau)d\tau
x(t)=mωn1∫0tF(τ)sinωn(t−τ)dτ
这个方法将不规则的连续输入离散化,运用微元的方法,再巧妙地引入了冲击函数
δ
(
t
)
\delta(t)
δ(t),从而可以写出每一个微元状态的表达式,最后叠加在一起,得到整个的输出。
从数学变换的理解,
F
(
τ
)
,
0
<
τ
<
t
F(\tau),0<\tau<t
F(τ),0<τ<t 是要转换的函数(充当采样样品作用),而
h
(
t
)
h(t)
h(t) 是核函数(充当采样探针的作用),于是就用函数
h
(
t
)
h(t)
h(t) 对函数
F
(
τ
)
F(\tau)
F(τ) 在
0
<
τ
<
t
0<\tau<t
0<τ<t 的每一处
τ
\tau
τ 进行采样,采样过程理解为,用
F
(
τ
)
F(\tau)
F(τ) 的函数值对
h
(
t
−
τ
)
h(t-\tau)
h(t−τ) 的幅值进行调制(即二者相乘),采样时间间隔为
d
τ
d\tau
dτ ,所以任意一点
τ
\tau
τ 处的采样值为
F
(
τ
)
h
(
t
−
τ
)
d
τ
F(\tau)h(t-\tau)d\tau
F(τ)h(t−τ)dτ ,所以总采样值(即最后总的变换结果)即为
∫
0
t
F
(
τ
)
h
(
t
−
τ
)
d
τ
\int^t_0F(\tau)h(t-\tau)d\tau
∫0tF(τ)h(t−τ)dτ。因此,我们就可以把卷积过程看作是采样探针函数在样品函数取值范围内,对样品函数连续扫描并求和的过程。
②拉普拉斯变换法(略)