DeepWalk及node2vec简单理解学习

本文介绍了DeepWalk的基本思想,它利用Word2vec模型对网络节点的随机游走序列进行概率建模,以实现节点向量化。DeepWalk的特点在于其依赖局部信息,适合分布式和在线系统。接着,文章探讨了node2vec,它是DeepWalk的扩展,通过调整参数p和q引入宽度优先搜索和深度优先搜索策略,以捕获网络中的局部和全局结构信息。
摘要由CSDN通过智能技术生成

DeepWalk

DeepWalk基本思想

DeepWalk是最早提出的基于 Word2vec 的节点向量化模型。其主要思路,就是利用构造节点在网络上的随机游走路径,来模仿文本生成的过程,提供一个节点序列,然后用Skip-gram和Hierarchical Softmax模型对随机游走序列中每个局部窗口内的节点对进行概率建模,最大化随机游走序列的似然概率,并使用最终随机梯度下降学习参数。
其目标函数为:
在这里插入图片描述
其中:
在这里插入图片描述

DeepWalk算法特点

DeepWalk算法充分利用了网络结构中的随机游走序列的信息,使用随机游走序列的信息有两点好处:
1.随机游走序列只依赖于局部信息,所以可适用于分布式和在线系统,而使用邻接矩阵就必须把所有信息存储于内存中处理,面临着较高的计算时间和空间消耗。
2.对随机游走序列进行建模可以降低建模0-1二值邻接矩阵的方差和不确定性。

node2vec基本思想

node2vec通过改变随机游走序列生成的方式进一步扩展了DeepWalk算法。DeepWalk选取随机游走序列中下一个节点的方式是均匀随机分布的,而node2vec通过引入两个参数p和q,将宽度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值