DeepWalk
DeepWalk基本思想
DeepWalk是最早提出的基于 Word2vec 的节点向量化模型。其主要思路,就是利用构造节点在网络上的随机游走路径,来模仿文本生成的过程,提供一个节点序列,然后用Skip-gram和Hierarchical Softmax模型对随机游走序列中每个局部窗口内的节点对进行概率建模,最大化随机游走序列的似然概率,并使用最终随机梯度下降学习参数。
其目标函数为:
其中:
DeepWalk算法特点
DeepWalk算法充分利用了网络结构中的随机游走序列的信息,使用随机游走序列的信息有两点好处:
1.随机游走序列只依赖于局部信息,所以可适用于分布式和在线系统,而使用邻接矩阵就必须把所有信息存储于内存中处理,面临着较高的计算时间和空间消耗。
2.对随机游走序列进行建模可以降低建模0-1二值邻接矩阵的方差和不确定性。
node2vec基本思想
node2vec通过改变随机游走序列生成的方式进一步扩展了DeepWalk算法。DeepWalk选取随机游走序列中下一个节点的方式是均匀随机分布的,而node2vec通过引入两个参数p和q,将宽度