(笔记)第二章:一个案例吃透深度学习(中)

一、【手写数字识别】之网络结构

之前我们用与房价预测相同的简单神经网络解决手写数字识别问题,但是效果并不理想
原因:是手写数字识别的输入是28 × 28的像素值,输出是0-9的数字标签。而线性回归模型无法捕捉二维图像数据中蕴含的复杂信息,牛顿第二定律任务以及房价预测任务,输入特征和输出预测值之间的关系均可以使用“直线”刻画(使用线性方程来表达)。但手写数字识别任务的输入像素和输出数字标签之间的关系显然不是线性的,甚至这个关系复杂到我们靠人脑难以直观理解的程度。
在这里插入图片描述
主要介绍两种常见的网络结构:经典的多层全连接神经网络和卷积神经网络

数据处理

#数据处理部分之前的代码,保持不变
import os
import random
import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image

import gzip
import json

# 定义数据集读取器
def load_data(mode='train'):

    # 数据文件
    datafile = './work/mnist.json.gz'
    print('loading mnist dataset from {} ......'.format(datafile))
    data = json.load(gzip.open(datafile))
    train_set, val_set, eval_set = data

    # 数据集相关参数,图片高度IMG_ROWS, 图片宽度IMG_COLS
    IMG_ROWS = 28
    IMG_COLS = 28

    if mode == 'train':
        imgs = train_set[0]
        labels = train_set[1]
    elif mode == 'valid':
        imgs = val_set[0]
        labels = val_set[1]
    elif mode == 'eval':
        imgs = eval_set[0]
        labels = eval_set[1]

    imgs_length = len(imgs)

    assert len(imgs) == len(labels), \
          "length of train_imgs({}) should be the same as train_labels({})".format(
                  len(imgs), len(labels))

    index_list = list(range(imgs_length))

    # 读入数据时用到的batchsize
    BATCHSIZE = 100

    # 定义数据生成器
    def data_generator():
        if mode == 'train':
            random.shuffle(index_list)
        imgs_list = []
        labels_list = []
        for i in index_list:
            img = np.reshape(imgs[i], [1, IMG_ROWS, IMG_COLS]).astype('float32')
            label = np.reshape(labels[i], [1]).astype('float32')
            imgs_list.append(img) 
            labels_list.append(label)
            if len(imgs_list) == BATCHSIZE:
                yield np.array(imgs_list), np.array(labels_list)
                imgs_list = []
                labels_list = []

        # 如果剩余数据的数目小于BATCHSIZE,
        # 则剩余数据一起构成一个大小为len(imgs_list)的mini-batch
        if len(imgs_list) > 0:
            yield np.array(imgs_list), np.array(labels_list)

    return data_generator

经典的全连接神经网络

经典的全连接神经网络来包含四层网络:输入层、两个隐含层和输出层
在这里插入图片描述

  • 输入层:将数据输入给神经网络。在该任务中,输入层的尺度为28×28的像素值。
  • 隐含层:增加网络深度和复杂度,隐含层的节点数是可以调整的,节点数越多,神经网络表示能力越强,参数量也会增加。在该任务中,中间的两个隐含层为10×10的结构,通常隐含层会比输入层的尺寸小,以便对关键信息做抽象,激活函数使用常见的sigmoid函数。
  • 输出层:输出网络计算结果,输出层的节点数是固定的。如果是回归问题,节点数量为需要回归的数字数量;如果是分类问题,则是分类标签的数量。在该任务中,模型的输出是回归一个数字,输出层的尺寸为1。

说明:

隐含层引入非线性激活函数sigmoid是为了增加神经网络的非线性能力。

举例来说,如果一个神经网络采用线性变换,有四个输入 x 1 x_1 x1~ x 4 x_4 x4,一个输出 y y y。假设第一层的变换是 z 1 = x 1 − x 2 z_1=x_1-x_2 z1=x1x2 z 2 = x 3 + x 4 z_2=x_3+x_4 z2=x3+x4,第二层的变换是 y = z 1 + z 2 y=z_1+z_2 y=z1+z2,则将两层的变换展开后得到 y = x 1 − x 2 + x 3 + x 4 y=x_1-x_2+x_3+x_4 y=x1x2+x3+x4。也就是说,无论中间累积了多少层线性变换,原始输入和最终输出之间依然是线性关系。


Sigmoid是早期神经网络模型中常见的非线性变换函数,通过如下代码,绘制出Sigmoid的函数曲线。

def sigmoid(x):
    # 直接返回sigmoid函数
    return 1. / (1. + np.exp(-x))
 
# param:起点,终点,间距
x = np.arange(-8, 8, 0.2)
y = sigmoid(x)
plt.plot(x, y)
plt.show()

在这里插入图片描述
针对手写数字识别的任务,网络层的设计如下:

  • 输入层的尺度为28×28,但批次计算的时候会统一加1个维度(大小为batchsize)。
  • 中间的两个隐含层为10×10的结构,激活函数使用常见的sigmoid函数。
  • 与房价预测模型一样,模型的输出是回归一个数字,输出层的尺寸设置成1。
# 多层全连接神经网络实现
class MNIST(fluid.dygraph.Layer):
    def __init__(self):
        super(MNIST, self).__init__()
        # 定义两层全连接隐含层,输出维度是10,激活函数为sigmoid
        self.fc1 = Linear(input_dim=784, output_dim=10, act='sigmoid') # 隐含层节点为10,可根据任务调整
        self.fc2 = Linear(input_dim=10, output_dim=10, act='sigmoid')
        # 定义一层全连接输出层,输出维度是1,不使用激活函数
        self.fc3 = Linear(input_dim=10, output_dim=1, act=None)
    
    # 定义网络的前向计算
    def forward(self, inputs, label=None):
        inputs = fluid.layers.reshape(inputs, [inputs.shape[0], 784])
        outputs1 = self.fc1(inputs)
        outputs2 = self.fc2(outputs1)
        outputs_final = self.fc3(outputs2)
        return outputs_final
#网络结构部分之后的代码,保持不变
with fluid.dygraph.guard():
    model = MNIST()
    model.train()
    #调用加载数据的函数,获得MNIST训练数据集
    train_loader = load_data('train')
    # 使用SGD优化器,learning_rate设置为0.01
    optimizer = fluid.optimizer.SGDOptimizer(learning_rate=0.01, parameter_list=model.parameters())
    # 训练5轮
    EPOCH_NUM = 5
    for epoch_id in range(EPOCH_NUM):
        for batch_id, data in enumerate(train_loader()):
            #准备数据
            image_data, label_data = data
            image = fluid.dygraph.to_variable(image_data)
            label = fluid.dygraph.to_variable(label_data)
            
            #前向计算的过程
            predict = model(image)
            
            #计算损失,取一个批次样本损失的平均值
            loss = fluid.layers.square_error_cost(predict, label)
            avg_loss = fluid.layers.mean(loss)
            
            #每训练了200批次的数据,打印下当前Loss的情况
            if batch_id % 200 == 0:
  
  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值