Golang Map原理(底层结构、查找/新增/删除、扩缩容)

Go语言的map实现基于哈希表,由数组+链表组成,使用拉链法处理冲突。map由hmap和bmap结构体表示,hmap的buckets指向bmap数组。key-value存储在bmap的keys和values数组中,高位哈希值用于快速查找。当负载因子超过6.5时,map会渐进式扩容,每次访问bucket时迁移部分数据,减少一次性迁移的资源消耗。在数据稀疏时,会进行等量扩容或缩容,优化空间利用率。
摘要由CSDN通过智能技术生成

参考:

一、Go Map底层结构:

Go map的底层实现是一个哈希表数组 + 链表),使用拉链法消除哈希冲突,因此实现map的过程实际上就是实现哈希表的过程。

先来看下go map底层的具体结构:

type hmap struct {
	count      int            // 元素个数,调用len(map)返回这个值
	B          uint8          // bucket数量是2^B, 最多可以放 loadFactor * 2^B 个元素,再多就要扩容了
	hash0      uint32         // hash seed
	buckets    unsafe.Pointer // 指向bucket数组的指针(存储key val);大小:2^B 
	oldbuckets unsafe.Pointer // 扩容时,buckets 长度是 oldbuckets 的两倍
	// ...
}
type bmap struct {
	topbits  [8]uint8     // 高位哈希值数组
	keys     [8]keytype   // 存储key的数组
	values   [8]valuetype // 存储val的数组
	overflow uintptr      // 指向当前bucket的溢出桶
	// 为缓解当存在多个key计算后的哈希值低8位相同的个数大于一个bucket所能存放的数目8个时,且这个map还没达到扩容条件时,做的一种存储设计。
}

在这里插入图片描述
在这个哈希表中,主要涉及到的结构体有两个:一个是 hmap(a header for a go map),一个是 bmap(a bucket for a go map):

  • 对于 hmap,我们只需要关注其中的 buckets,它是一个指向 bmap结构体类型数组的指针。
    • 而对于其中的 bmap
      • 高位哈希值 topbits:数组记录的是当前bucket中key相关的 “索引”
      • 指向扩容bucket的指针 overflow:每个 bmap类型的 bucket 最多只能放 8个k-v键值对。如果碰巧有key的哈希值一样的新数据存入当前bucket,那就需要再构建一个新的溢出桶 bucket,并通过overflow指针连接起来,使得bucket形成一个链表结构。
      • 存储key/value的数组 keysvalues

二、key-value是如何存放的:

当前bucket桶中的 key-value 的值的存放是有其特点的,bucket桶中所有的key存放到 keys数组中,而所有的value存放到 values数组中。
这么做的原因也很简单,可以在key和value的长度不同时,消除padding(内存对齐)带来的空间浪费。具体如图所示:
在这里插入图片描述

三、根据key 查找/新增 数据:

对传来的key进行哈希运算得到唯一哈希值,并将该哈希值分为高位和低位,如图所示:
在这里插入图片描述
蓝色为高位,红色为低位。 低位用于寻找当前key属于哪个bucket,而高位用于寻找对应bucket中的具体key

而之前 bmap中的高位哈希值数组字段 topbits,存的就是当前bucket桶中不同key-value键值对中对应key的高位哈希值,这样便于根据key查找数据。

新增的过程与查找过程类似,也是填充桶的过程。

四、删除map中的数据

针对map中的key-value数据:

  • 如果是指针类型数据,则将其原有引用去除,利用go GC来清理内存
  • 如果是类型数据,则直接清理对应内存空间

最后将该key-value记录对应的 【bmap中高位哈希值数组 topbits】中的key相关 “索引” 置空。

五、map的扩容

当go map中每个bucket桶存储的平均元素个数大于加载因子 loadFactor = 6.5(判断扩容的条件)时,map底层就会创建一个容量大小是原来2倍的新buckets数组,并将 oldbuckets指针指向原来的旧buckets数组。然后,对旧buckets数组中的元素key重新哈希(rehash)得到新的哈希值,根据新的哈希值的高位和低位来放入扩容后的新buckets数组中。

加载因子越小↓,说明空间利用率低,因此 “产生冲突的机会” 低;
加载因子越大↑,说明空间利用率高,但是 “产生冲突的机会” 也高了。

不过需要注意的是:

并不是立刻把 oldbuckets指针所指向的旧bucket数组中的元素一次性转移到新的bucket数组当中,而是当只有访问到具体某个key所在的bucket时,才会将该bucket中的旧数据逐步迁移到新bucket中。一直到旧数据完全迁移完,才会删除 oldbuckets的指向,使得旧buckets空间得到释放。如下图所示:
在这里插入图片描述
这里迁移完并不会直接删除旧bucket中的数据,而是把原来旧数据的引用去掉,利用GC逐步清除内存
最终迁移完成后,会释放oldbuckets指针指向的旧哈希表占用的内存空间。

六、map的等量扩容(缩容)

map中数据较少,overflow 指向的溢出桶bucket数量过多时,会导致溢出桶中的记录存储很稀疏,排列不紧凑,大量空间被浪费。这时就需要进行等量扩容/缩容(一般出现在之前数据被大量删除的场景下)。

其实就是重新整理一下数据,使溢出桶中的数据重新紧凑的放在普通bucket桶中,避免不必要的空间浪费。

七、map的渐进式扩容

Go Map 扩容,做数据迁移时为何不一次性迁移数据,而是等到访问到具体某个bucket时才将数据从旧bucket中迁移到新bucket中?

  • 一次性迁移会涉及到cpu资源和内存资源的占用,在数据量较大时,会有较大的延时,影响正常业务逻辑。因此Go采用渐进式的数据迁移,每次最多迁移两个bucket的数据到新的buckets中(一个是当前访问key所在的bucket,然后再多迁移一个bucket)。
  • 尤其是cpu资源,扩容时需要迁移map中oldbuckets的元素,其中的 rehash 操作(计算键在新哈希表中新的位置)会消耗cpu的计算资源,有可能会影响到用户协程的调度
  • 内存资源,因为最终还是会将所有的旧数据进行迁移,因此内存占用的大小最终其实还是一样的,影响不大。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值