人工智能机器学习基本概念详解
机器学习(Machine Learning, ML)是人工智能(Artificial Intelligence, AI)的一个重要分支,旨在让计算机系统自动从数据中学习并进行预测或决策,而无需明确的编程指令。本文将详细探讨机器学习的基本概念,包括监督学习、无监督学习、强化学习及其应用示例。
一、机器学习的基本概念
1.1 数据
数据是机器学习的基础。机器学习模型通过分析数据来识别模式和规律。数据通常分为以下几种类型:
- 结构化数据:通常以表格格式存储,如电子表格或数据库,包含行和列(例如,用户信息表)。
- 非结构化数据:没有固定格式的数据,如文本、图像、音频等(例如,社交媒体帖子)。
- 半结构化数据:部分结构化的数据,如XML或JSON文件,包含标签。
1.2 特征与标签
- 特征(Features):特征是用于描述数据的属性或变量。例如,在房价预测中,特征可以包括面积、卧室数量、位置等。
- 标签(Label):标签是模型需要预测的目标值。在监督学习中,标签是已知的输出。例如,在房价预测中,标签是房子的价格。
订阅专栏 解锁全文
1279





