参考文献:分分钟快速掌握“反向传播算法”,这篇文章来源:知乎 作者:晓雷
关键词:计算图、反向传播、链式法则、神经网络、梯度计算。
Keywords:Computation Graph, Backpropagation, Chain Rule, Neural Network, Gradient Computation.
-
计算图解析:神经网络的求导方法
——前向模式与反向模式求导的对比与解析【表格】求导方法的对比
步骤序号 过程描述 计算方法 关键参数 备注 1 计算图表示 通过节点和边表示变量和操作 节点:变量, 边:操作 便于求导的可视化工具 2 加法求导法则 ∂x∂(u+v)=∂x∂u+∂x∂v u,v:加数 计算图中加法边的求导 3 乘法求导法则 ∂x∂(uv)=u∂x∂v+v∂x∂u u,v:乘数 计算图中乘法边的求导 4 前向模式求导 从输入到输出依次求导 依次计算每条边的导数 每次只能得到一个输入的偏导 5 反向模式求导 从输出到输入依次求导 依次计算每条边的导数 一次运算可得所有输入的偏导 6 反向传播算法的重要性 加速神经网络的学习过程 通过链式法则高效计算梯度 特别是参数众多的神经网络 7 路径与边的关系 每条路径的导数是路径上所有边的乘积 路径:变量连接序列, 边:导数 路径数量可能呈指数增长 8 合并策略 先求局部影响,再求全局影响 局部影响:中间变量对输出的影响, 全局影响:输入对中间变量的影响 减少计算量,提高效率 核心结论:反向传播算法是神经网络学习的关键,它通过计算图和链式法则实现了梯度的高效计算,从而加速了神经网络的学习过程。
- 几个公式:
- 链式法则(Chain Rule):若y=f(u)且u=g(x),则dxdy=dudy⋅dxdu。
-
关键点关系描述:
- 计算图是求导的可视化工具,通过节点和边表示变量和操作。
- 加法求导法则和乘法求导法则是计算图中边求导的基本规则。
- 前向模式求导每次只能得到一个输入的偏导,而反向模式求导一次运算可得所有输入的偏导。
- 反向传播算法利用链式法则和计算图实现了梯度的高效计算,对神经网络学习至关重要。
- 路径与边的关系揭示了计算图中路径数量和求导复杂度的关系,而合并策略则是一种优化求导过程的方法。
参考文献:
- Ian Goodfellow, Yoshua Bengio, and Aaron Courville. (2016). Deep Learning. MIT Press. 【影响因子=N/A,深度学习领域的经典著作】
- 本书详细介绍了深度学习的基础知识和最新进展,包括神经网络、反向传播算法等。
- Simon Haykin. (2009). Neural Networks and Learning Machines. Prentice Hall. 【影响因子=N/A,神经网络领域的经典教材】
- 本书系统阐述了神经网络的基本原理和学习算法,特别是反向传播算法的应用。
- Christopher M. Bishop. (2006). Pattern Recognition and Machine Learning. Springer. 【影响因子=3,机器学习领域的经典著作】
- 本书介绍了模式识别和机器学习的基本概念和方法,包括神经网络和反向传播算法。