【神经网络系列(初级)】计算图解析:神经网络的求导方法——前向模式与反向模式求导的对比与解析

本文通过计算图详细解释了前向传播和反向传播在神经网络中的作用。反向传播算法能高效计算损失函数关于权重参数的偏导数,尤其在参数数量巨大时,其优势更为明显,极大地加速了神经网络的学习过程。
摘要由CSDN通过智能技术生成

参考文献:分分钟快速掌握“反向传播算法”,这篇文章来源:知乎 作者:晓雷

关键词:计算图、反向传播、链式法则、神经网络、梯度计算。
Keywords:Computation Graph, Backpropagation, Chain Rule, Neural Network, Gradient Computation.

  • 计算图解析:神经网络的求导方法
    ——前向模式与反向模式求导的对比与解析

    【表格】求导方法的对比

    步骤序号过程描述计算方法关键参数备注
    1计算图表示通过节点和边表示变量和操作节点:变量, 边:操作便于求导的可视化工具
    2加法求导法则∂x∂(u+v)​=∂x∂u​+∂x∂v​u,v:加数计算图中加法边的求导
    3乘法求导法则∂x∂(uv)​=u∂x∂v​+v∂x∂u​u,v:乘数计算图中乘法边的求导
    4前向模式求导从输入到输出依次求导依次计算每条边的导数每次只能得到一个输入的偏导
    5反向模式求导从输出到输入依次求导依次计算每条边的导数一次运算可得所有输入的偏导
    6反向传播算法的重要性加速神经网络的学习过程通过链式法则高效计算梯度特别是参数众多的神经网络
    7路径与边的关系每条路径的导数是路径上所有边的乘积路径:变量连接序列, 边:导数路径数量可能呈指数增长
    8合并策略先求局部影响,再求全局影响局部影响:中间变量对输出的影响, 全局影响:输入对中间变量的影响减少计算量,提高效率

    核心结论:反向传播算法是神经网络学习的关键,它通过计算图链式法则实现了梯度的高效计算,从而加速了神经网络的学习过程。

  • 几个公式
  • 链式法则(Chain Rule):若y=f(u)且u=g(x),则dxdy​=dudy​⋅dxdu​。

  • 关键点关系描述

  • 计算图是求导的可视化工具,通过节点和边表示变量和操作。
  • 加法求导法则乘法求导法则是计算图中边求导的基本规则。
  • 前向模式求导每次只能得到一个输入的偏导,而反向模式求导一次运算可得所有输入的偏导。
  • 反向传播算法利用链式法则计算图实现了梯度的高效计算,对神经网络学习至关重要。
  • 路径与边的关系揭示了计算图中路径数量和求导复杂度的关系,而合并策略则是一种优化求导过程的方法。

参考文献:

  • Ian Goodfellow, Yoshua Bengio, and Aaron Courville. (2016). Deep Learning. MIT Press. 【影响因子=N/A,深度学习领域的经典著作】
    • 本书详细介绍了深度学习的基础知识和最新进展,包括神经网络、反向传播算法等。
  • Simon Haykin. (2009). Neural Networks and Learning Machines. Prentice Hall. 【影响因子=N/A,神经网络领域的经典教材】
    • 本书系统阐述了神经网络的基本原理和学习算法,特别是反向传播算法的应用。
  • Christopher M. Bishop. (2006). Pattern Recognition and Machine Learning. Springer. 【影响因子=3,机器学习领域的经典著作】
    • 本书介绍了模式识别和机器学习的基本概念和方法,包括神经网络和反向传播算法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

神经美学-茂森

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值