医学图像处理
文章平均质量分 90
深度学习、核磁共振医学图像处理
阿宝111111
这个作者很懒,什么都没留下…
展开
-
【论文阅读笔记】基于自监督学习的心脏MR图像解剖位置预测分割
卷积神经网络因其能够学习具有判别力的图像特征,用于多种分类和回归任务,改变了医学图像分析领域。然而,成功地学习这些特征需要大量人工标注的数据,这些数据的获取代价昂贵,并且受限于专家图像分析师的可用资源。因此,无监督、弱监督和自监督的特征学习技术受到了广泛的关注,其目的是利用大量可用的数据,同时避免或大幅减少人工标注的工作量。本文提出了一种新的方法来训练心脏MR图像分割网络,通过预测解剖位置以自监督的方式学习特征。解剖位置作为监督信号,不需要额外的人工标注。原创 2024-03-03 21:57:31 · 1663 阅读 · 0 评论 -
【论文阅读笔记】混合Transformer U-net用于医学图像分割
用于医学图像分割的混合transformer U-Net原创 2024-03-02 21:11:54 · 917 阅读 · 0 评论