【论文阅读笔记】面向心脏MRI分割的方向特征图学习

文章介绍了一种利用方向特征图解决心脏MRI分割中类间模糊和类内不一致问题的新方法。DFM通过学习方向场强化差异和相似性,通过DF模块和FRF模块优化分割特征。实验结果显示了该方法在ACDC数据集和大规模自采集数据上的优越性能。
摘要由CSDN通过智能技术生成

Learning Directional Feature Maps for Cardiac MRI Segmentation

摘要
心脏MRI分割对于评估个性化的心脏性能参数在临床诊断中起着至关重要的作用。由于心脏MRI的边界模糊和强度分布不均匀,大多数现有方法仍然面临两个方面的挑战:类间模糊和类内不一致。为了解决这两个问题,我们提出了一种新的利用方向特征图的方法,该方法可以同时加强类间的差异和类内的相似性。具体来说,我们进行心脏分割,并通过一个方向场( Direction Field,DF )模块学习一个指向每个像素的远离最近心脏组织边界的方向场。然后,基于学习到的方向场,本文提出了一个特征校正和融合( FRF )模块来改进原始的分割特征,并获得最终的分割结果。所提出的模块简单而有效,可以灵活地添加到任何现有的分割网络中,而不会过度增加时间和空间复杂度。在2017年MICCAI心脏自动诊断挑战赛( Automated Cardiac Diagnosis Challenge,ACDC )数据集和大规模自采集数据集上对所提方法进行了评估,显示了所提方法良好的分割性能和鲁棒的泛化能力。

内容
在本文中提出以方向信息为指导改进原始分割特征,以更好地进行心脏MRI分割。
在这里插入图片描述

图2:所提方法示意图。给定一幅图像,该网络从U-Net和方向场( DF ) (通过其方向信息进行可视化)中预测一个初始分割图,在此基础上,通过特征校正和融合( FRF )模块对原始分割特征进行重构和融合,以产生最终的分割结果。
在自然图像分割和医学图像分割中,普遍存在类间模糊和类内不一致的现象。同时,分割模型通常学习个体表示,因此缺乏对像素之间关系的限制。本文提出了一种简单而有效的方法来利用像素之间的方向关系,可以同时加强类间的差异和类内的相似性。所提出的方法称为DFM,其流程如图2所示。我们采用U-Net 作为我们的基本分割框架。给定一幅输入图像,网络产生初始分割图。同时,我们应用了一个方向场( DF )模块来学习U-Net中具有共享特征的方向场。然后提出了特征校正特征( FRF )模块,将初始分割特征与学习到的方向场相结合,以生成最终改进的分割结果。

DF Module to Learn a Direction Field

首先详细介绍了方向场的定义。如图3 ( a-b )所示,对于每个前景像素p,找到它在心脏组织边界上的最近像素b,然后通过b和p之间的距离将指向b到p的方向向量 b p ⃗ \vec{bp} bp 归一化,将背景像素设置为( 0,0 )。形式上,图像域Ω中每个像素p的方向场DF由下式给出:
D F ( p ) = { b p ⃗ ∣ b p ⃗ ∣ p ∈ f o r e g r o u n d , ( 0 , 0 ) o t h e r w i s e . DF(p)= \left\{ \begin{array}{lr} \vec{bp}\over |\vec{bp}| & p\in foreground,\\ (0,0) & otherwise. \end{array} \right. DF(p)={bp bp (0,0)pforeground,otherwise.
本文提出了一个简单而有效的DF模块来学习上述方向场,如图3所示。该模块由一个1 × 1的卷积组成,其输入为U - Net提取的64通道特征,输出为双通道方向场。值得注意的是,通过距离变换算法,我们可以很容易地从标注中获得方向场的真值。
在这里插入图片描述
图3 . DF模块示意图。给定一幅图像,网络根据一幅二维向量图像预测一个新的方向场。( a )和( b )表示距离当前像素最近的边界像素的向量。我们计算并可视化了右侧方向场的方向和幅度信息。

特征校正与融合模块( FRF Module )

在这里插入图片描述
图4:FRF模块的示意图。我们使用学习到的方向场来指导特征校正。对于靠近边界的像素的特征用远离边界的特征(具有相同的语义范畴)进行校正。

DF模块预测的方向场揭示了像素之间的方向关系,提供了一个唯一的方向向量,从为每个像素到中心区域的边界。在这些方向向量的引导下,本文提出了一个特征校正和融合( Feature Rectification and Fusion,FRF )模块,利用中心区域的特征来逐步校正初始分割特征图中的错误。如图4所示,由初始特征图 F N ∈ R C × H × W F^N∈R^{C × H × W} FNRC×H×W和预测方向场 D F ∈ R 2 × H × W DF∈R^{2 × H × W} DFR2×H×W逐步得到N步改进特征图 F N ∈ R C × H × W FN∈R^{C × H × W} FNRC×H×W。具体地,通过双线性插值计算 D F ( p ) DF(p) DF(p)所指向位置的特征,迭代地更新像素p的改进特征。也就是说, F ( p ) F(p) F(p)是由中心区域的特征逐渐修正的。整个过程形式化如下:
∀ p ∈ Ω , F k ( p ) = F ( k − 1 ) ( p x + D F ( p ) x , p y + D F ( p ) y ) , ∀p ∈ Ω, F ^k(p) = F ^{(k−1)}(px + DF (p)_x, py + DF (p)_y ), pΩ,Fk(p)=F(k1)(px+DF(p)x,py+DF(p)y),
其中1≤k≤N表示当前步长,N表示总步长(如无特殊说明,设置为5),px ( resp.py )表示像素p的x ( resp.y )坐标。在执行上述矫正过程后,我们将 F N F^N FN F 0 F^0 F0进行级联,然后在级联的特征图上应用最终的分类器来预测最终的心脏分割。

训练目标

该方法涉及初始分割 L C E i L^i _{CE} LCEi、最终分割 L C E f L^f _{CE} LCEf和方向场LDF的损失函数。我们采用通用的交叉熵 L C E L_{CE} LCE作为分割损失,以鼓励语义分割中常用的类分离特征。形式上, L C E L_{CE} LCE L C E = − ∑ i y i l o g ( y i ^ ) L_{CE} =− ∑ _i y_ilog(\hat{y_i}) LCE=iyilog(yi^).其中, y i y_i yi y i ^ \hat{y_i} yi^分别表示真实值和预测值。对于监督方向场学习的损失,我们选择L2范数距离和角度距离作为训练目标:
L D F = ∑ p ∈ Ω w ( p ) ( ∣ ∣ D F ( p ) − ˆ D F ( p ) ∣ ∣ 2 + α × ∣ ∣ c o s − 1 〈 D F ( p ) , D F ^ ( p ) 〉 ∣ ∣ 2 ) L_{DF} = ∑ _{p\inΩ} w(p)(||DF (p) − ˆ DF (p)||_2 + α × ||cos^{−1}〈DF (p), \hat{DF} (p)〉||2) LDF=pΩw(p)(∣∣DF(p)ˆDF(p)2+α×∣∣cos1DF(p),DF^(p)∣∣2)
式中: D F ^ \hat{DF} DF^和DF分别表示预测的方向场和对应的真实标签的真值,α是平衡L2范数距离和角度距离的超参数,在所有实验中都为1, w ( p ) w(p) w(p)表示像素p上的权重,由计算得到:
在这里插入图片描述
其中 ∣ C i ∣ | C_i | Ci表示标记为i的像素总数, N c l s N_{cls} Ncls表示类别数。总损耗L结合了 L C E L_{CE} LCE L D F L_{DF} LDF,平衡因子λ = 1:
在这里插入图片描述
实验结果:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 29
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值