Pytorch实例----CAFAR10数据集分类(AlexNet)

CAFAR10数据集介绍:CAFAR

图像大小:3\times 32 \times 32

训练集:50000

测试集:10000

类别:

classes = ('plane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

实验步骤:

1、加载数据集:torchvision.dataset.CIFAR10(parameters)

    note:

  • transform设置:transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5),(0.5, 0.5, 0.5))])将图像作为tensor输入,同时进行归一化处理,均值为0.5, 方差为0.5,三个分量分别为RGB值。
  • DataLoader是pytorch常用数据加载函数,进行批次数据传送,batch_size的设定指明每次输入数据量,因此预测时与之对应
#define transform
#hint: Normalize(mean, var) to normalize RGB
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5),(0.5, 0.5, 0.5))])
#define trainloader
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=False, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2)
#define testloader
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=False, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=True, num_workers=2)

 2、定义网络结构:以AlexNet为例构建网络结构

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        
        #constract network
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool1 = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16*5*5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
        
    def forward(self, x):
        out = self.pool1(F.relu(self.conv1(x)))
        out = self.pool1(F.relu(self.conv2(out)))
        out = out.view(-1, 16*5*5)
        out = F.relu(self.fc1(out))
        out = F.relu(self.fc2(out))
        out = self.fc3(out)
        return out
net = Net()
print(net)

3、定义损失函数和优化器

#define loss
cost = nn.CrossEntropyLoss()
#define optimizer
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

 4、训练网络

#iteration for training
for epoch in range(2):
    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        inputs, labels = data
        inputs, labels = Variable(inputs), Variable(labels)
        optimizer.zero_grad()
        outputs = net(inputs)
        loss = cost(outputs, labels)
        loss.backward()
        optimizer.step()
        
        #print loss result
        running_loss += loss.item()
        if i % 2000 == 1999:
            print('[%d, %5d]  loss: %.3f'%(epoch + 1, i + 1, running_loss / 2000))
            running_loss = 0.001
print('done')

 5、展示部分结果(图像+预测类别)

#get random image and label
dataiter = iter(testloader)
images, labels = dataiter.next()
imshow(torchvision.utils.make_grid(images))
print('groundTruth: ', ''.join('%6s' %classes[labels[j]] for j in range(4)))

#get the predict result
outputs = net(Variable(images))
_, pred = torch.max(outputs.data, 1)
print('prediction: ', ''.join('%6s' %classes[labels[j]] for j in range(4)))

 6、测试整个预测结果

#test the whole result
correct = 0.0
total = 0
for data in testloader:
    images, labels = data
    outputs = net(Variable(images))
    _, pred = torch.max(outputs.data, 1)
    total += labels.size(0)
    correct += (pred == labels).sum()
print('average Accuracy: %d %%' %(100*correct / total))

7、展示各类别预测结果

#list each class prediction
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
for data in testloader:
    images, labels = data
    outputs = net(Variable(images))
    _, pred = torch.max(outputs.data, 1)
    c = (pred == labels).squeeze()
    for i in range(4):
        label = labels[i]
        class_correct[label] += float(c[i])
        class_total[label] += 1
print('each class accuracy: \n')
for i in range(10):
    print('Accuracy: %6s %2d %%' %(classes[i], 100 * class_correct[i] / class_total[i]))

完整代码如下: 

import torch
import torchvision
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.autograd import Variable
import torchvision.transforms as transforms

import matplotlib.pyplot as plt
import numpy as np

def imshow(img):
    img = img / 2 + 0.5
    np_img = img.numpy()
    plt.imshow(np.transpose(np_img, (1, 2, 0)))

#define transform
#hint: Normalize(mean, var) to normalize RGB
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5),(0.5, 0.5, 0.5))])
#define trainloader
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=False, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2)
#define testloader
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=False, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=True, num_workers=2)
#define class
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

#define the network
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        
        #constract network
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool1 = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16*5*5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
        
    def forward(self, x):
        out = self.pool1(F.relu(self.conv1(x)))
        out = self.pool1(F.relu(self.conv2(out)))
        out = out.view(-1, 16*5*5)
        out = F.relu(self.fc1(out))
        out = F.relu(self.fc2(out))
        out = self.fc3(out)
        return out
net = Net()
print(net)
#define loss
cost = nn.CrossEntropyLoss()
#define optimizer
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

#iteration for training
for epoch in range(2):
    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        inputs, labels = data
        inputs, labels = Variable(inputs), Variable(labels)
        optimizer.zero_grad()
        outputs = net(inputs)
        loss = cost(outputs, labels)
        loss.backward()
        optimizer.step()
        
        #print loss result
        running_loss += loss.item()
        if i % 2000 == 1999:
            print('[%d, %5d]  loss: %.3f'%(epoch + 1, i + 1, running_loss / 2000))
            running_loss = 0.001
print('done')

'''
#get random image and label
dataiter = iter(testloader)
images, labels = dataiter.next()
imshow(torchvision.utils.make_grid(images))
print('groundTruth: ', ''.join('%6s' %classes[labels[j]] for j in range(4)))

#get the predict result
outputs = net(Variable(images))
_, pred = torch.max(outputs.data, 1)
print('prediction: ', ''.join('%6s' %classes[labels[j]] for j in range(4)))
'''
#test the whole result
correct = 0.0
total = 0
for data in testloader:
    images, labels = data
    outputs = net(Variable(images))
    _, pred = torch.max(outputs.data, 1)
    total += labels.size(0)
    correct += (pred == labels).sum()
print('average Accuracy: %d %%' %(100*correct / total))

#list each class prediction
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
for data in testloader:
    images, labels = data
    outputs = net(Variable(images))
    _, pred = torch.max(outputs.data, 1)
    c = (pred == labels).squeeze()
    for i in range(4):
        label = labels[i]
        class_correct[label] += float(c[i])
        class_total[label] += 1
print('each class accuracy: \n')
for i in range(10):
    print('Accuracy: %6s %2d %%' %(classes[i], 100 * class_correct[i] / class_total[i]))
    

实验结果:

可以看到,预测结果为55%,其中较低识别率的类别为cat(19%), bird(33%), truck(47%),设法提高小目标类别的准确率能进一步提高整体识别效果。此处仅以最简单的AlexNet即达到了55%的识别效果,最高识别类别car(74%),horse(67%), plane(67%)。进一步使用更复杂的网络可进一步提高识别效果。 

practice makes perfects !

github soure code: https://github.com/GinkgoX/CAFAR10_Classification_Task/blob/master/CAFAR10_AlexNet.ipynb

  • 0
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值