TS模糊非线性预测和多步预测结合求解动态多目标优化问题

A new prediction strategy combining T-S fuzzy nonlinear regression prediction and multi-step prediction for dynamic multi-objective optimization

I. Introduction

普通的求解 DMOP 的方法:在统的静态 MOEA 中引入了一些特定的操作来处理 DMOP
传统方法通常会失去种群的多样性,一旦种群收敛,就很难在新的变化环境中找到最优解。
检测到环境变化后,加快收敛速度,增加种群多样性方法:
超突变和移民策略、保持在群多样性、多种群或并行计算、记忆策略、 预测策略
前反馈预测策略 (FPS)--- 自回归模型 (AR)--- 对种群小部分进行简单预测,准确度不够。
种群预测策略 (PPS)---AR 预测中心和流形 --- 对环境不规则或非线性变化以及预测模型的历史信息不足,优化效果较差。
有向搜索策略 (DSS)--- 非支配解集变化方向和正交方向 --- 计算个体适应度值需要额外代价。
卡尔曼滤波 (KF)--- 随机重新初始化方向,线性离散时间 KF 预测

x_t=\sum_{i=1}^l{\alpha _ix_{t-i}+\beta +\delta \left( t \right)}  AR

简化的ARx_t=x_{t-1}+stepsize*g_t+\delta \left( t \right)g_t=\frac{C_{t-1}-C_{t-2}}{||C_{t-1}-C_{t-2}||}

II. Background

A. DMOEA() 框架

B. T-S模糊模型:非线性动态系统的典型代表

IF\,\,x_1\,\,is\,\,A_{i1}\,\,and\,\,x_2\,\,is\,\,A_{i2}\,\,and\cdots and\,\,x_M\,\,is\,\,A_{iM} THEN\,\,y_i=a_{i0}+a_{i1}x_1+a_{i2}x_2+\cdots +a_{iM}x_M

其中i=1,2,\cdots ,C C 是模糊规则个数;X=\left( x_1,x_2,\cdots ,x_M \right) M 个系统输入;a_{ij}是第 i 个模糊规则的第 j

输入分量的后继参数;y_i是第i个模糊规则的输出,A_{ij}是模糊集合(模糊子集)

T-S模糊模型表示

其中 \omega _i 是第i个模糊规则输入的可信度

\omega _i=\mu _{i1}\land \mu _{i2}\land \cdots \land \mu _{iM}

其中\mu _{ij}是属于模糊集合A_{ij}的第i个模糊规则的第j个输入分量x_j的隶属函数值

III. Prediction strategy combining T-S fuzzy nonlinear regression prediction and multi-step prediction

A. T-S fuzzy nonlinear regression prediction model

假设环境连续变化了N个时间,PS的中心构成的时间序列 \left( X^{t-N+1},X^{t-N+2},\cdots ,X^{t-1},X^t \right) ,其中

X^{t-k}=\left( x_{1}^{t-k},x_{2}^{t-k},\cdots ,x_{j}^{t-k},\cdots ,x_{D-1}^{t-k},x_{D}^{t-k} \right) ,k=0,1,\cdots ,N-1,D是决策变量的维数

因此C个被发现的PS中心可以视为C个聚类中心,T-S模糊非线性回归模型的形式如下:

其中 k=1,2,\cdots ,N-M,MT-S模糊非线性回归模型的阶数

根据最大熵原理[MEP] ,对于第c条模糊规则,属于聚类中心x_{cj}^{C}的输入的隶属函数值x_{j}^{t-k}服从Gibbs分布,可以计算如下:

那么k+1时刻的初始PS中心的第j个分量:

所以

\overline{x}_{j}^{t-k+1}=\sum_{c=1}^C{\varphi _{i}^{t-k}\left( a_{c0}+a_{c1}x_{j}^{t-k-\left( M-1 \right)}+a_{c2}x_{j}^{t-k-\left( M-2 \right)}+\cdots +a_{cM}x_{j}^{t-k} \right)}

令:Y=\left[ x_{j}^{t},x_{j}^{t-1},\cdots ,x_{j}^{t-\left( N-M \right)} \right] ^T

则:A=\left[ a_{10},a_{11},\cdots ,a_{1M},a_{20},a_{21},\cdots ,a_{2M},a_{C0},a_{C1},\cdots ,a_{CM} \right] ^T

由:

ZA=Y及其最小二乘法有: A=\left( Z^TZ \right) ^{-1}Z^TY

t+1时刻第i个个体的第j个分量(使用两个最近连续的PS流形来预测新的初始PS流形,PPS)

B. Multi-step prediction model

使用多步预测减少拐点处预测误差

C. Pseudo-code description of TSMP

经过TSMP得到t+1时刻种群位置

PS:当环境发生变化时,如果存储单元中存储的PS数据不足以构建TSMP预测模型,则通过从当前PS随机选择一半个体和之前找到的PS的一半个体来重新初始化新的初始PS;否则,使用提出的TSMP预测策略重新初始化新的初始PS。另外,为简单起见,将T-S模糊非线性回归预测模型的阶数和多步预测模型的步长设置为3

IV. Experimental design

A. 评价指标

     

B. Experimental RESULT 

Comparisons on typical benchmark test functions [MOBSA/D ]  [RISFPSPPSTSMP]

TSMP算法在复杂DMOP问题上具有相对稳定的收敛性能,是求解DMOP问题的一种有效而有前途的方法。

TSMP在四种策略中获得了相对较好的Pareto前沿分布,在这些问题的MSP度量中表现最好。

Comparison of MIGD curves versus the time

预测过程中存在偏差过大的情况

某些问题下性能指标在后两个阶段,波动情况比PPS更大

Comparison of distribution of the obtained PF [dMOP2UDF5]

TSMP可以实现更好的初始PF和最终PF的收敛和分布,尽管它在某些情况下可能比其他策略执行得更差。

Comparisons on ZJZ problems  [F5-F9]

TSMP在四种策略中获得了相对较好的收敛和分布,在这些ZJZ问题的MIGDMSP度量方面表现最好.

Influence of MOEA optimizers

大多数情况下,不同的MOEA算法结合TSMP的效果最好。

在所有的预测策略中,TSMP在大多数情况下都能获得更好的接近真实PF的初始PS,以快速响应环境变化

Influence of severity of changes  [ \tau _t=30,n_t变化]      

在大多数情况下,TSMP可以获得最好的结果,并且随着改变的严重程度的降低,TSMP的效果更好

Influence of frequency of changes  [\tau _t,变化,n_t=10]

TSMP在处理动态环境方面具有很好的应用前景

Comparison with recent dynamic MOEAs  [DSS  , MOEA/D-KF , DMS  and SPPS ]

TSMP的表现并不显著优于或等于DSSDMS

TSMP的性能优于SPPS,但不如MOEA/D-KF

因此,TSMP需要改进,以便在处理DMOP时能够很好地执行。

Comparison under recent MOEA optimizers    [ ENS-SS, KnEA and ISDE +]

TSMP的性能明显好于比较的策略,尽管它的性能不是很好,在处理其他功能时还需要改进

链接:https://www.sciencedirect.com/science/article/abs/pii/S2210650220304028

 

 

 

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值