Pytorch显存动态分配规律探索

  下面通过实验来探索Pytorch分配显存的方式。

实验

显存到主存

  我使用VSCode的jupyter来进行实验,首先只导入pytorch,代码如下:

import torch

  打开任务管理器查看主存与显存情况。情况分别如下:

  在显存中创建1GB的张量,赋值给a,代码如下:

a = torch.zeros([256,1024,1024],device= 'cpu') 

  查看主存与显存情况:

  可以看到主存与显存都变大了,而且显存不止变大了1G,多出来的内存是pytorch运行所需的一些配置变量,我们这里忽略。

  再次在显存中创建一个1GB的张量,赋值给b,代码如下:

b = torch.zeros([256,1024,1024],device= 'cpu') 

  查看主显存情况:

  这次主存大小没变,显存变高了1GB,这是合情合理的。然后我们将b移动到主存中,代码如下:

b = b.to('cpu')  

  查看主显存情况:

  发现主存是变高了1GB,显存却只变小了0.1GB,好像只是将显存张量复制到主存一样。实际上,pytorch的确是复制了一份张量到主存中,但它也对显存中这个张量的移动进行了记录。我们接着执行以下代码,再创建1GB的张量赋值给c:

c = torch.zeros([256,1024,1024],device= 'cuda')  

  查看主显存情况:

  发现只有显存大小变大了0.1GB,这说明,Pytorch的确记录了显存中张量的移动,只是没有立即将显存空间释放,它选择在下一次创建新变量时覆盖这个位置。接下来,我们重复执行上面这行代码:

c = torch.zeros([256,1024,1024],device= 'cuda')  

  主显存情况如下:

  明明我们把张量c给覆盖了,显存内容却变大了,这是为什么呢?实际上,Pytorch在执行这句代码时,是首先找到可使用的显存位置,创建这1GB的张量,然后再赋值给c。但因为在新创建这个张量时,原本的c依然占有1GB的显存,pytorch只能先调取另外1GB显存来创建这个张量,再将这个张量赋值给c。这样一来,原本的那个c所在的显存内容就空出来了,但和前面说的一样,pytorch并不会立即释放这里的显存,而等待下一次的覆盖,所以显存大小并没有减小。

  我们再创建1GB的d张量,就可以验证上面的猜想,代码如下:

d = torch.zeros([256,1024,1024],device= 'cuda')  

  主显存情况如下:

  显存大小并没有变,就是因为pytorch将新的张量创建在了上一步c空出来的位置,然后再赋值给了d。另外,删除变量操作也同样不会立即释放显存:

del d

  主显存情况:

  显存没有变化,同样是等待下一次的覆盖。

主存到显存

  接着上面的实验,我们创建直接在主存创建1GB的张量并赋值给e,代码如下:

e = torch.zeros([256,1024,1024],device= 'cpu')  

  主显存情况如下:

  主存变大1GB,合情合理。然后将e移动到显存,代码如下:

e = e.to('cuda')

  主显存情况如下:

  主存变小1GB,显存没变是因为上面张量d被删除没有被覆盖,合情合理。说明主存的释放是立即执行的。

总结 

  通过上面的实验,我们了解到,pytorch不会立即释放显存中失效变量的内存,它会以覆盖的方式利用显存中的可用空间。另外,如果要重置显存中的某个规模较大的张量,最好先将它移动到主存中,或是直接删除,再创建新值,否则就需要两倍的内存来实现这个操作,就有可能出现显存不够用的情况。 

  实验代码汇总如下:

#%% 
import torch
#%%
a = torch.zeros([256,1024,1024],device= 'cuda')  
#%%
b = torch.zeros([256,1024,1024],device= 'cuda')  
#%%
b = b.to('cpu')
#%%
c = torch.zeros([256,1024,1024],device= 'cuda')  
#%%
c = torch.zeros([256,1024,1024],device= 'cuda')  
#%%  
d = torch.zeros([256,1024,1024],device= 'cuda')  
#%%
del d 
#%%  
e = torch.zeros([256,1024,1024],device= 'cpu')  
#%%
e = e.to('cuda')
当使用PyTorch训练神经网络时,显存不足是一个常见的问题。显存主要被网络模型和中间变量占用。网络模型中的参数占用显存,而中间变量包括特征图和优化器等是消耗显存最多的部分。以下是一些节省PyTorch显存占用的小技巧: 1. 减少批量大小(batch size):减少每个批次中样本的数量可以减少显存的使用量。但是要注意,较小的批量大小可能会影响模型的训练效果。 2. 使用半精度浮点数(half-precision floating point):PyTorch支持使用半精度浮点数进行训练,可以减少显存的使用量。可以使用`torch.cuda.amp`模块来实现自动混合精度训练。 3. 及时释放不需要的显存:在训练过程中,可以使用`torch.cuda.empty_cache()`来释放不需要的显存。 4. 减少模型参数的数量:可以通过减少网络模型的大小或使用更简单的模型来减少显存的使用量。 5. 使用分布式训练:如果有多个GPU可用,可以使用分布式训练来减少每个GPU上的显存使用量。 6. 使用梯度累积(gradient accumulation):将多个小批次的梯度累积起来更新模型参数,可以减少每个小批次的显存使用量。 7. 使用PyTorch的优化器优化显存使用:PyTorch提供了一些优化器,如`torch.optim`中的`pack_padded_sequence`和`pad_packed_sequence`,可以优化处理变长序列时的显存使用。 8. 使用PyTorch的分布式数据并行(DistributedDataParallel):可以使用`torch.nn.DataParallel`或`torch.nn.parallel.DistributedDataParallel`来在多个GPU上并行训练模型,从而减少每个GPU上的显存使用量。 这些方法可以帮助您在PyTorch中节省显存占用,但请注意,根据您的具体情况,可能需要根据实际情况进行调整和尝试。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值