自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(25)
  • 收藏
  • 关注

原创 实序列傅里叶变换_B Real Sequence Fourier Transform

用N点复序列快速傅立叶变换来计算2N点实序列的离散傅立叶变换假设(n)是长度为2N的实序列为有效地计算傅立叶变换x(k),我们将x(k)分为偶数组和奇数组,形成两个新序列f(n)和g(n),即f(n)=x(2n),g(n)=x(2n+I),然后将f(n)和g(n)组成一个复序列h(n)h(n)=f(n)+jg(n),n=0,1,....N-1用FFT计算h(n)的N点傅立叶变换H(k),并且H(k)可表示为H(k)=F(k)+G(k),k=0,1,...N-1由上容易推出F(k) = [

2023-08-23 08:41:40 132

原创 实序例快速傅里叶变换 Real Sequence Fast Fourier Transform

实序列FFT算法的C语言实现, DFT和IDFT是数字信号分析与处理中的一种重要运算和变换,但直接根据定义计算DFT时,运算量大,不能实时得到计算结果。特别是在实际应用中,N都取得比较大,此时,由于乘法和加法的次数都近似与N的平方成正比,这将极大增加DFT计算所需时间。为此,提出了许多DFT和IDFT的快速算法,称为快速傅里叶变换(FFT)和快速傅里叶反变换(IFFT)。 本文较为系统地阐述了快速傅里叶变换的算法原理然后用MATLAB实现了快速傅里叶变换。论文首先首要介绍了FT与DFT的定义、DFT与FFT

2023-08-22 09:19:14 109

原创 分裂基快速傅里叶变换 反变换, Split Radix Fast Fourier Transform

一个N点的DFT 可以分解为一个N/2点的DFT 和两个N/4点的DFT 。这种分解既有基2的部分,又有基4的部分,因此称为分裂基分解。上面的N/2点DFT 又可分解为一个N/4点的DFT 和两个N/8点的DFT, 而两个N/4点的DFT也分别可以分解为一个N/8点的DFT和两个N/16点的DFT 。依此类推,直至分解到最后一级为止。这就是按频率抽取的分裂基快速傅立叶变换算法。分裂基快速算法是将基2和基4分解组合而成。在基2m类快速算法中,分裂基算法具有最少的运算量,且仍保留结构规则

2023-08-18 11:17:55 268

原创 基4快速傅里叶变换,基4快速傅里叶反变换 Radix4 FFT

就将一个N点得DFT转化为四个N/4点DFT来计算。依此类推,直至分解到最后一级。以上就是按频率抽取的基4快速傅里叶变换算法。与基2FFT相比,基4FFT的乘法量约减少25%,加法量也略有减少。

2023-08-17 14:38:53 377

原创 快速傅里叶变换 FFT

【代码】快速傅里叶变换 FFT。

2023-08-14 11:51:34 52

原创 离散傅里叶变换 Discrete Fourier Transform

【代码】离散傅里叶变换 Discrete Fourier Transform。

2023-08-11 14:43:37 65 1

原创 解析信号的生成 Analytical Signal

一个实值信号的傅里叶变换是复数对称的。这意味着,相对于正值频率,负值频率的内容是多余的。在他们的工作中,旨在通过去除傅里叶变换产生的多余的负频率内容来创建一个解析信号。解析信号是复值的,但其频谱是单边的(只有正频率),保留了原始实值信号的频谱内容。使用解析信号而不是原始实值信号,已被证明在许多信号处理应用中是有用的。例如,在频谱分析中,使用解析信号代替原始实值信号可以减轻估计偏差,并消除由于负的和正的频率成分而产生的跨期伪影。

2023-08-09 16:57:43 116

原创 Sine Combination Signal 正弦组合信号

【代码】Sine Combination Signal 正弦组合信号。

2023-08-08 14:59:41 79

原创 ARMA 模型的生成

ARMA可谓是时间序列最为经典常用的预测方法,广泛应有于涉及时间序列的各个领域。ARMA模型自出道以来,出场次数不可胜数。想必大家也都不陌生,常学常新,我们今天不妨再来回顾一遍~。ARMA全称Autoregressive moving average model(自回归滑动平均模型),由美国统计学家博克斯(G.E.P.Box)和英国统计学家詹金斯(G.M.Jenkins)在二十世纪七十年代提出,也称B-J方法。ARMA模型有三种基本形式:自回归模型(AR,Auto-regressive)自回归

2023-08-07 09:26:23 220 1

原创 Poisson Distribution

【代码】Poisson Distribution。

2023-08-04 14:42:47 42 1

原创 Binomial Distribution

【代码】Binomial Distribution。

2023-08-04 10:39:06 38 1

原创 Bernoulli Gauss Distribution

贝努利-高斯分布的随机变量x是贝努利分布的随机变量y与高斯分布的随机变量z的乘积,即x=y∗x。因此,贝努利-高斯分布的随机数可视为:每当贝努利序列中有1出现时,打开高斯随机数发生器,并用其输出代替1。贝努利-高斯分布的均值为pμ,方差为p,其中p是贝努利分布的参数,μ是高斯分布的均值。在地震勘探信号处理中,常用贝努利-高斯序列描述地下主要层状结构的反射作用。

2023-08-04 08:07:35 63 1

原创 Bernoulli Distribution

Bernoulli distribution 贝努里分布! 散点图, 概率质量函数

2023-08-03 15:12:14 56

原创 Erlang Random Distribution

Erlang random distribution, 埃尔朗散点图, 密度函数

2023-08-03 10:22:28 59

原创 Weibull Distribution

Weibull Distribution,散点图,密度曲线

2023-08-02 16:59:34 55 2

原创 Cauchy Distribution

柯西分布!

2023-08-02 15:33:57 50

原创 Log Normal Distribution

【代码】Log Normal Distribution。

2023-08-02 08:24:33 65 1

原创 Rayleigh Distribution

生成瑞利随机数,根据散点,求密度分布函数!

2023-08-01 08:33:11 38 1

原创 Laplace Distribution

【代码】Laplace Distribution。

2023-07-31 14:54:59 52

原创 Exponent Distribution

【代码】Exponential distribution

2023-07-31 10:00:19 29 1

原创 Gauss Distribution

【代码】Gauss Distribution。

2023-07-29 09:46:03 59

原创 为何是除2!应该是除以数组的长度为32?

//求偶数点FFT或IFFT的结果,递归实现多级蝶形运算。为何只有在是2的时候结果是正确的!按理应该是除以32!///求偶数点IFFT的结果,递归实现多级蝶形运算。///输入序列只有一个元素,输出这个元素并返回。///有输入序列的长度确定输出序列的长度。///输入序列的长度的一半。///正变换旋转因子的基数。///序列中下标为偶数的点。///序列中下标为奇数的点。//返回IFFT的结果。///输入序列的长度。

2023-07-26 14:31:18 88 1

原创 为何for循环的结果没有获得?

输出output全部为零!

2023-07-26 10:43:51 206 1

原创 【C# 均布随机数的产生!】

int i, j;double x;for (i=0;i

2023-07-24 11:24:54 221

原创 【无标题】

实序例共轭对称反变换C程序有错!找错!

2023-07-24 10:59:18 73

实序例傅里叶变换 Real Sequence Fourier Transform B

用N点复序列快速傅立叶变换来计算2N点实序列的离散傅立叶变换 假设(n)是长度为2N的实序列 为有效地计算傅立叶变换x(k),我们将x(k)分为偶数组和奇数组,形成两个新序列 f(n)和g(n),即 f(n)=x(2n),g(n)=x(2n+I), 然后将f(n)和g(n)组成一个复序列h(n) h(n)=f(n)+jg(n),n=0,1,....N-1 用FFT计算h(n)的N点傅立叶变换H(k),并且H(k)可表示为 H(k)=F(k)+G(k),k=0,1,...N-1 由上容易推出 F(k) = [H(k) + H*(N-k)] G(k) = [H(k) - H*(N-k)] 求得F(k)和G(k)后,利用下面的蝶形运算计算x(n)的离散傅立叶变换X(k) 这种实序列FFT算法比相同长度的复序列FFT算法大约可减少一半的运算量。

2023-08-23

实序例快速傅里叶变换, Real Sequence Fast Fourier Transform A

如果序列x(n)是实数,那么其傅立叶变换X(k)一般是复数,但其实部是偶对称,虚部是奇对称,即X(k)具有如下共辄对称性: X(0)和X(N/2)都是实数,且有: X(k)=X∗(N−k) , 1⩽k⩽N2−1 在计算离散傅立叶变换时,利用这种共辄对称性,我们就可以不必计算与存储X(k)(N/2+1⩽k⩽N—1)以及X(0)和X(N/2)的虚部,而仅需计算X(0)到X(N/2)即可。 此处我们选择的是计算X(0)到X(N/4)和X(N/2)到X(3N/4) , 这样做可以恰好利用复序列FFT 算法的前(N/4)+1个复数蝶形。这就是按时间抽取的基2实序列FFT算法,它比复序列FFT算法大约可减少一半的运算量和存储量。

2023-08-22

分裂基快速傅里叶变换 反变换, Split Radix Fast Fourier Transform

一个N点的DFT 可以分解为一个N/2点的DFT 和两个N/4点的DFT 。这种分解既有基2的部分,又有基4的部分,因此称为分裂基分解。上面的N/2点DFT 又可分解为一个N/4点的DFT 和两个N/8点的DFT, 而两个N/4点的DFT也分别可以分解为一个N/8点的DFT和两个N/16 点的DFT 。依此类推,直至分解到最后一级为止。这就是按频率抽取的分裂基快速傅立叶变换算法。 分裂基快速算法是将基2和基4分解组合而成。在基2m类快速算法中,分裂基算法具有最少的运算量,且仍保留结构规则、原位计算等优点。

2023-08-18

基4 快速傅里叶变换 Radix4 Fast Fourier Transform

就将一个N点得DFT转化为四个N/4 点DFT来计算。依此类推,直至分解到最后一级。以上就是按频率抽取的基4快速傅里叶变换算法。与基2FFT相比,基4FFT的乘法量约减少25%,加法量也略有减少。

2023-08-17

信号处理 快速傅里叶变换 FFT

快速傅里叶变换 (Fast Fourier Transform),即利用计算机计算离散傅里叶变换(DFT)的高效、快速计算方法的统称,简称FFT,于1965年由J.W.库利和T.W.图基提出。 是对离散傅里叶变换的快速算法!

2023-08-14

离散傅里叶变换 Discrete Fourier transform

输入复序列,进行离散傅里叶变换,结果于理论值比较,对离散傅里叶结果进行离散傅里叶反变换,结果与输入复序例比较!

2023-08-11

解析信号的生成 Analytical Signal

一个实值信号的傅里叶变换是复数对称的。这意味着,相对于正值频率,负值频率的内容是多余的。在他们的工作中,旨在通过去除傅里叶变换产生的多余的负频率内容来创建一个解析信号。解析信号是复值的,但其频谱是单边的(只有正频率),保留了原始实值信号的频谱内容。使用解析信号而不是原始实值信号,已被证明在许多信号处理应用中是有用的。例如,在频谱分析中,使用解析信号代替原始实值信号可以减轻估计偏差,并消除由于负的和正的频率成分而产生的跨期伪影。

2023-08-09

Sine Combination Signal 正弦组合信号

在对傅里叶级数的研究中,复杂的周期函数可以用一系列简单的正弦、余弦波之和表示。傅里叶变换是对傅里叶级数的扩展,由它表示的函数的周期趋近于无穷。

2023-08-08

ARMA 模型,自动回归平滑模型

ARMA可谓是时间序列最为经典常用的预测方法,广泛应有于涉及时间序列的各个领域。ARMA模型自出道以来,出场次数不可胜数。想必大家也都不陌生,常学常新,我们今天不妨再来回顾一遍~。 ARMA全称Autoregressive moving average model(自回归滑动平均模型),由美国统计学家博克斯(G.E.P.Box)和英国统计学家詹金斯(G.M.Jenkins)在二十世纪七十年代提出,也称B-J方法。 ARMA模型有三种基本形式: 自回归模型(AR,Auto-regressive) 自回归模型根据历史观测值进行预测。 其中,是预测误差,为回归系数。 移动平均模型(MA,Moving Average) 移动平均模型根据历史预测误差进行预测。 其中,为前q期的随机扰动项,误差项是当前期的随机干扰(零均值白噪声序列),为平滑系数。 混合模型(ARMA,Auto-regressive Moving Average) 混合模型为同时包含AR模型和MA模型。

2023-08-07

Poisson Distribution

泊松分布适合于描述单位时间内随机事件发生的次数的概率分布。如某一服务设施在一定时间内受到的服务请求的次数,电话交换机接到呼叫的次数、汽车站台的候客人数、机器出现的故障数、自然灾害发生的次数、DNA序列的变异数、放射性原子核的衰变数、激光的光子数分布等等。

2023-08-04

二项式分布 散点图 PMF

二项分布 是指在只有两个结果的n次独立的伯努利试验中,所期望的结果出现 次数的概率 。 在单次试验中,结果A出现的概率为p,结果B出现的概率为q,p+q=1。 那么在n=10,即10次试验中,结果A出现0次、1次、……、10次的概率各是多少呢?

2023-08-04

贝努利-高斯分布,Bernoulli Gauss Distribution

贝努利-高斯分布的随机变量x 是贝努利分布的随机变量y与高斯分布的随机变量z的乘积,即x=y∗x 。因此,贝努利-高斯分布的随机数可视为:每当贝努利序列中有1出现时,打开高斯随机数发生器,并用其输出代替1。贝努利-高斯分布的均值为pμ,方差为p,其中p是贝努利分布的参数,μ是高斯分布的均值。 在地震勘探信号处理中,常用贝努利-高斯序列描述地下主要层状结构的反射作用。

2023-08-04

bernoulli distribution 贝努里分布,散点图, 概率质量函数

假设一个事件只有发生或者不发生两种可能,并且这两种可能是固定不变的。那么,如果假设它发生的概率是p,那么它不发生的概率就是1-p。这就是伯努利分布。 伯努利实验就是做一次服从伯努利概率分布的事件,它发生的可能性是p,不发生的可能性是1-p。

2023-08-03

埃尔朗分布 散点图 密度函数

泊松分布,指数分布,爱尔朗分布都是应用与Queuing theory排队概率分析

2023-08-03

weibull distribution, 散点图,密度分布曲线

weibull distribution, 散点图,密度分布曲线,韦伯分布被经常用来对失效性(time to Failure)或者,反而言之为,可靠性,进行衡量的工具。

2023-08-02

柯西分布C#程序,散点图,柯西分布密度函数

柯西分布散点图,柯西分布密度函数

2023-08-02

对数正态分布 Log Normal Distribution

随机数对数正态分布,根据散点求正态分布密度函数!

2023-08-02

Reyleigh Distribution

生成瑞利分布的随机数!根据散点求密度分布函数!

2023-08-01

Laplace random number,laplace transform!

laplace tranform

2023-07-31

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除