- 博客(25)
- 收藏
- 关注
原创 实序列傅里叶变换_B Real Sequence Fourier Transform
用N点复序列快速傅立叶变换来计算2N点实序列的离散傅立叶变换假设(n)是长度为2N的实序列为有效地计算傅立叶变换x(k),我们将x(k)分为偶数组和奇数组,形成两个新序列f(n)和g(n),即f(n)=x(2n),g(n)=x(2n+I),然后将f(n)和g(n)组成一个复序列h(n)h(n)=f(n)+jg(n),n=0,1,....N-1用FFT计算h(n)的N点傅立叶变换H(k),并且H(k)可表示为H(k)=F(k)+G(k),k=0,1,...N-1由上容易推出F(k) = [
2023-08-23 08:41:40 132
原创 实序例快速傅里叶变换 Real Sequence Fast Fourier Transform
实序列FFT算法的C语言实现, DFT和IDFT是数字信号分析与处理中的一种重要运算和变换,但直接根据定义计算DFT时,运算量大,不能实时得到计算结果。特别是在实际应用中,N都取得比较大,此时,由于乘法和加法的次数都近似与N的平方成正比,这将极大增加DFT计算所需时间。为此,提出了许多DFT和IDFT的快速算法,称为快速傅里叶变换(FFT)和快速傅里叶反变换(IFFT)。 本文较为系统地阐述了快速傅里叶变换的算法原理然后用MATLAB实现了快速傅里叶变换。论文首先首要介绍了FT与DFT的定义、DFT与FFT
2023-08-22 09:19:14 109
原创 分裂基快速傅里叶变换 反变换, Split Radix Fast Fourier Transform
一个N点的DFT 可以分解为一个N/2点的DFT 和两个N/4点的DFT 。这种分解既有基2的部分,又有基4的部分,因此称为分裂基分解。上面的N/2点DFT 又可分解为一个N/4点的DFT 和两个N/8点的DFT, 而两个N/4点的DFT也分别可以分解为一个N/8点的DFT和两个N/16点的DFT 。依此类推,直至分解到最后一级为止。这就是按频率抽取的分裂基快速傅立叶变换算法。分裂基快速算法是将基2和基4分解组合而成。在基2m类快速算法中,分裂基算法具有最少的运算量,且仍保留结构规则
2023-08-18 11:17:55 268
原创 基4快速傅里叶变换,基4快速傅里叶反变换 Radix4 FFT
就将一个N点得DFT转化为四个N/4点DFT来计算。依此类推,直至分解到最后一级。以上就是按频率抽取的基4快速傅里叶变换算法。与基2FFT相比,基4FFT的乘法量约减少25%,加法量也略有减少。
2023-08-17 14:38:53 377
原创 离散傅里叶变换 Discrete Fourier Transform
【代码】离散傅里叶变换 Discrete Fourier Transform。
2023-08-11 14:43:37 65 1
原创 解析信号的生成 Analytical Signal
一个实值信号的傅里叶变换是复数对称的。这意味着,相对于正值频率,负值频率的内容是多余的。在他们的工作中,旨在通过去除傅里叶变换产生的多余的负频率内容来创建一个解析信号。解析信号是复值的,但其频谱是单边的(只有正频率),保留了原始实值信号的频谱内容。使用解析信号而不是原始实值信号,已被证明在许多信号处理应用中是有用的。例如,在频谱分析中,使用解析信号代替原始实值信号可以减轻估计偏差,并消除由于负的和正的频率成分而产生的跨期伪影。
2023-08-09 16:57:43 116
原创 ARMA 模型的生成
ARMA可谓是时间序列最为经典常用的预测方法,广泛应有于涉及时间序列的各个领域。ARMA模型自出道以来,出场次数不可胜数。想必大家也都不陌生,常学常新,我们今天不妨再来回顾一遍~。ARMA全称Autoregressive moving average model(自回归滑动平均模型),由美国统计学家博克斯(G.E.P.Box)和英国统计学家詹金斯(G.M.Jenkins)在二十世纪七十年代提出,也称B-J方法。ARMA模型有三种基本形式:自回归模型(AR,Auto-regressive)自回归
2023-08-07 09:26:23 220 1
原创 Bernoulli Gauss Distribution
贝努利-高斯分布的随机变量x是贝努利分布的随机变量y与高斯分布的随机变量z的乘积,即x=y∗x。因此,贝努利-高斯分布的随机数可视为:每当贝努利序列中有1出现时,打开高斯随机数发生器,并用其输出代替1。贝努利-高斯分布的均值为pμ,方差为p,其中p是贝努利分布的参数,μ是高斯分布的均值。在地震勘探信号处理中,常用贝努利-高斯序列描述地下主要层状结构的反射作用。
2023-08-04 08:07:35 63 1
原创 为何是除2!应该是除以数组的长度为32?
//求偶数点FFT或IFFT的结果,递归实现多级蝶形运算。为何只有在是2的时候结果是正确的!按理应该是除以32!///求偶数点IFFT的结果,递归实现多级蝶形运算。///输入序列只有一个元素,输出这个元素并返回。///有输入序列的长度确定输出序列的长度。///输入序列的长度的一半。///正变换旋转因子的基数。///序列中下标为偶数的点。///序列中下标为奇数的点。//返回IFFT的结果。///输入序列的长度。
2023-07-26 14:31:18 88 1
实序例傅里叶变换 Real Sequence Fourier Transform B
2023-08-23
实序例快速傅里叶变换, Real Sequence Fast Fourier Transform A
2023-08-22
分裂基快速傅里叶变换 反变换, Split Radix Fast Fourier Transform
2023-08-18
基4 快速傅里叶变换 Radix4 Fast Fourier Transform
2023-08-17
信号处理 快速傅里叶变换 FFT
2023-08-14
离散傅里叶变换 Discrete Fourier transform
2023-08-11
解析信号的生成 Analytical Signal
2023-08-09
Sine Combination Signal 正弦组合信号
2023-08-08
ARMA 模型,自动回归平滑模型
2023-08-07
Poisson Distribution
2023-08-04
二项式分布 散点图 PMF
2023-08-04
贝努利-高斯分布,Bernoulli Gauss Distribution
2023-08-04
bernoulli distribution 贝努里分布,散点图, 概率质量函数
2023-08-03
weibull distribution, 散点图,密度分布曲线
2023-08-02
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人