李宏毅机器学习笔记(3)—Gradient Descent

本文介绍了Gradient Descent的优化技巧,包括学习率调整、Stochastic Gradient Descent和Feature Scaling。通过理解学习率的重要性、Adagrad算法以及随机梯度下降的优势,可以提升模型的训练效率。特征缩放有助于更快收敛,通过标准化数据,确保各特征在同一尺度上。
摘要由CSDN通过智能技术生成

Gradient Descent 的技巧

下图是对偏微分的书写形式的补充说明,可以用倒三角来表示偏微分组成的向量,也就是梯度。所以下图左侧的式子可以写成下图右侧的式子。这种使用某一字符代表向量的写法可以大大简化书写,倒三角表示偏微分向量也能够简化书写。
在这里插入图片描述

Tip 1: Tuning your learning rates

第一个技巧也就是改变 learning rates 的速率。可以预见的是过小的 learning rates 会让参数收敛的十分缓慢,过大的 learning rates 会让参数无法收敛或是说出现震荡现象。所以一个合理的想法就是我们应该去调整 learning rates。
以下图片描述的想法是,一开始我们应该让 learning rates 较大,为了快速收敛,但一段时间后为了不出现震荡,我们应该缩小 learning rates,所以就有了下图的 η/sqr(t+1),其中 t 是指迭代的次数。
在这里插入图片描述
但是这仅仅是一种十分简单粗暴的方法,肯定是不太能适用于一般情况。所以我们考虑给每个不同的参数不同的 learning rates 。
在下图中可以看到,为了让learning rates 有合适的变化,我们采用了一种叫Adagrad 的方式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值