Gradient Descent 的技巧
下图是对偏微分的书写形式的补充说明,可以用倒三角来表示偏微分组成的向量,也就是梯度。所以下图左侧的式子可以写成下图右侧的式子。这种使用某一字符代表向量的写法可以大大简化书写,倒三角表示偏微分向量也能够简化书写。
Tip 1: Tuning your learning rates
第一个技巧也就是改变 learning rates 的速率。可以预见的是过小的 learning rates 会让参数收敛的十分缓慢,过大的 learning rates 会让参数无法收敛或是说出现震荡现象。所以一个合理的想法就是我们应该去调整 learning rates。
以下图片描述的想法是,一开始我们应该让 learning rates 较大,为了快速收敛,但一段时间后为了不出现震荡,我们应该缩小 learning rates,所以就有了下图的 η/sqr(t+1),其中 t 是指迭代的次数。
但是这仅仅是一种十分简单粗暴的方法,肯定是不太能适用于一般情况。所以我们考虑给每个不同的参数不同的 learning rates 。
在下图中可以看到,为了让learning rates 有合适的变化,我们采用了一种叫Adagrad 的方式