Pytorch中,torch.tensor(),torch.Tensor()都用于生成新的张量。
import torch
a = torch.tensor([1,2,3])
b = torch.Tensor([1,2,3])
c = torch.FloatTensor([1,2,3])
print(a,b,c)
print(a.dtype,b.dtype,c.dtype)
print(a.type(),b.type(),c.type())
print(type(torch.FloatTensor()),type(torch.Tensor()))
'''
tensor([1, 2, 3]) tensor([1., 2., 3.]) tensor([1., 2., 3.])
torch.int64 torch.float32 torch.float32
torch.LongTensor torch.FloatTensor torch.FloatTensor
<class 'torch.Tensor'> <class 'torch.Tensor'>
'''
torch.Tensor()
torch.Tensor()是Python类,更明确些,其相当于torch.FloatTensor()的别名,torch.Tensor([1,2])会调用Tensor类的构造函数__init__,生成单精度浮点型张量
torch.tensor()
torch.tensor()仅仅是Python的函数,函数原型是:
torch.tensor(data, dtype=None, device=None, requires_grad=False)
其中data可以是:list, tuple, array, scalar等类型。
torch.tensor()可以从data中的数据部分做拷贝(而不是直接引用),根据原始数据类型生成相应的torch.LongTensor,torch.FloatTensor,torch.DoubleTensor。
>>> a = torch.tensor([1, 2])
>>> a.type()
'torch.LongTensor'
>>> a = torch.tensor([1., 2.])
>>> a.type()
'torch.FloatTensor'
>>> a = np.zeros(2, dtype=np.float64)
>>> a = torch.tensor(a)
>>> a.type()
torch.DoubleTensor