一、研究背景
1、伪造检测所面临如下挑战:对于伪造检测任务,基于单张视频帧的泛化方法已较为成熟,但这些方法对干扰比较敏感(例如,分辨率压缩)。
2、现有伪造检测技术分为两类:一类是通过抑制高级语义来辅助特征提取,但是这类方法性能不佳;另一类是通过检测不协调动作来进行伪造分类,但是现有伪造技术已经不存在这一问题。
二、研究动机
伪造视频经常表现出异常的面部动作和表情,同时随着时间的推移,面部也会产生细微变化。与纹理细节等低级特征相比,上述高级特征更能够抵抗压缩或模糊造成的检测干扰。
三、研究目标
1、将时间维度纳入考虑,利用talking faces在外貌和动作中蕴含的丰富信息进行伪造检测;
2、避免模型过拟合于现有伪造技术;
3、解决以往模型需要预训练的问题。
四、技术路线
提出RealForensics,分两阶段进行处理:
1、通过自监督的方式,利用图像信息和音频信息之间的自然对应关系,习得包含面部动作、表情、身份等信息的时间密集特征。
具体操作是:
(1