Leveraging Real Talking Faces via Self-Supervision for Robust Forgery Detection

该研究关注伪造视频检测的挑战,尤其是在分辨率压缩等干扰下的鲁棒性。研究发现,利用面部动作和表情等高级特征比低级纹理更能抵抗干扰。RealForensics框架被提出,它通过自监督学习,利用图像和音频的对应关系学习时间密集特征,并用此进行伪造检测。实验表明这种方法提高了检测效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、研究背景
1、伪造检测所面临如下挑战:对于伪造检测任务,基于单张视频帧的泛化方法已较为成熟,但这些方法对干扰比较敏感(例如,分辨率压缩)。
2、现有伪造检测技术分为两类:一类是通过抑制高级语义来辅助特征提取,但是这类方法性能不佳;另一类是通过检测不协调动作来进行伪造分类,但是现有伪造技术已经不存在这一问题。

二、研究动机
伪造视频经常表现出异常的面部动作和表情,同时随着时间的推移,面部也会产生细微变化。与纹理细节等低级特征相比,上述高级特征更能够抵抗压缩或模糊造成的检测干扰。

三、研究目标
1、将时间维度纳入考虑,利用talking faces在外貌和动作中蕴含的丰富信息进行伪造检测;
2、避免模型过拟合于现有伪造技术;
3、解决以往模型需要预训练的问题。

四、技术路线
在这里插入图片描述
提出RealForensics,分两阶段进行处理:
1、通过自监督的方式,利用图像信息和音频信息之间的自然对应关系,习得包含面部动作、表情、身份等信息的时间密集特征。
具体操作是:
(1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二苏旧局吖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值