TPAMI-2024-Fully Unsupervised Deepfake Video Detection Via Enhanced Contrastive Learning

一、研究背景
1.现有deepfake方法依赖于准确的标签监督,因此受限于标签数量或标签攻击。
2.现有无监督任务仍需要部分标注:利用无标注数据进行模型预训练,利用有标签数据微调分类器(类别需要标注)。

二、研究动机
1.以往工作中,上游对特征提取器的训练是无监督的,而下游对分类器的训练仍然需要真实标签监督。
2.真伪视频的深层高级特征相似性大,需要在语义层面提取特征,而不是像分类任务一样在理解层面提取特征。因此在无监督任务的初步聚类中,使用手工伪影特征(VAF)更合适。
3.单纯的对比学习框架不能改良伪造检测特征。

三、研究目标
在无标签的情况下训练下游的分类器。

四、技术路线
在这里插入图片描述

1.PSEUDO-LABEL GENERATOR

  • 针对眼部和唇部提取手工特征。
  • 聚类分配伪标签。由于没有任何先验知识,伪标签仅用于区分两种类型的簇,不能区分真假。

2.ENHANCED CONTRASTIVE LEARNING

  • Data Augmentation
  • Enhanced Contrastive Learner&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二苏旧局吖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值