MMNet: Multi-Collaboration and Multi-Supervision Network for Sequential Deepfake Detection

一、研究背景
1.序列深度伪造检测旨在识别正确的操纵顺序并对伪造区域进行恢复。
2.由于操纵空间和操纵顺序具有不同的组合方式,伪造结果表现出巨大的差异,严重影响了检测性能。
3.伪造图像的恢复需要获知操纵模型的信息,但相关信息通常被攻击者隐藏。

二、研究动机
1.操纵区域的尺度和位置不同,特征金字塔网络可以检测尺度变化较大的目标。
2.特征金字塔网络的有效性主要来源于多输出结构,但计算开销大。

三、研究目标
构建更适用的特征金字塔网络。

四、技术路线
在这里插入图片描述

提出了多协作和多监督网络(MMNet),处理伪造图像中的各种空间尺度和顺序排列,并在不了解相应的操纵信息的情况下实现恢复。
1.多协作模块:挖掘空间和序列上的操纵痕迹

  • 特征压缩:减轻通道维度的冗余
  • 三类检测支路:捕获不同尺度的区域
  • 自注意力机制:通过捕获不同面部区域之间的长程依赖,评估决策置信度
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二苏旧局吖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值