一、研究背景
1.序列深度伪造检测旨在识别正确的操纵顺序并对伪造区域进行恢复。
2.由于操纵空间和操纵顺序具有不同的组合方式,伪造结果表现出巨大的差异,严重影响了检测性能。
3.伪造图像的恢复需要获知操纵模型的信息,但相关信息通常被攻击者隐藏。
二、研究动机
1.操纵区域的尺度和位置不同,特征金字塔网络可以检测尺度变化较大的目标。
2.特征金字塔网络的有效性主要来源于多输出结构,但计算开销大。
三、研究目标
构建更适用的特征金字塔网络。
四、技术路线
提出了多协作和多监督网络(MMNet),处理伪造图像中的各种空间尺度和顺序排列,并在不了解相应的操纵信息的情况下实现恢复。
1.多协作模块:挖掘空间和序列上的操纵痕迹
- 特征压缩:减轻通道维度的冗余
- 三类检测支路:捕获不同尺度的区域
- 自注意力机制:通过捕获不同面部区域之间的长程依赖,评估决策置信度