OpenCV的基础认知与安装使用

本文介绍了OpenCV的基础认知,包括其作为开源计算机视觉库的角色和应用领域。接着详细阐述了OpenCV3.0.0在Windows上的安装过程,包括下载、解压、配置环境变量、工程包含目录、库目录和链接库的设置,以及安装后的基础测试和可能出现的问题解决方法。
摘要由CSDN通过智能技术生成

OpenCV基础认知

OpenCV全称为Open Source Vision Library,最直接的理解就是“开源的计算机视觉库”,实现了图像处理和计算机视觉方面的很多通用算法,常简称为OpenCV,成为了视觉领域最有力的研究工具之一,其设计目标是执行速度尽量快,主要关注于实时应用,采用优化的C/C++代码编写,能够充分利用多核处理器的优势,构建了一个简单的易用的计算机视觉框架,可以帮助计算机开发人员更便捷地设计更复杂的计算机视觉相关的应用程序。覆盖了计算机视觉的许多应用领域,例如工厂产品检测、医学成像、信息安全、用户界面、摄像机标定、立体视觉和机器人等。从发展以来,不断地进行优化,发布了很多的版本。


OpenCV安装与环境的配置

以OpenCV3.0.0为例,

1.可以进入官网下载(速度有点慢),或者直接使用百度网盘下载。

2.下载完成后得到opencv 3.0.0.exe文件,双击下载的opencv 3.0.0.exe(相当于是解压程序),提示解压到某个文件夹下,这时候也可以自定义,解压完成后会生成一个opencv文件夹,该文件夹下包含build和sources文件,sources文件夹里包含的是OpenCV官方示例集以及说明文档。

2.配置环境变量

【计算机】------>【(右键)属性】------>【高级系统配置】------->【高级(标签)】------>【环境变量】--->选中环境变量下的变量Path点击下方的“编辑”按钮,会显示以下对话框,在环境变量后面做修改

opencv-4.4.0-vc14_vc15.exe 版本:4.4.0 2020年7月 OpenCV 4.x的夏季更新已发布 :晴天: 此版本的亮点: SIFT(尺度不变特征变换)算法已移至主存储库(SIFT的专利已过期) DNN模块: 改进的图层/激活/支持更多模型: 最新的Yolo v4检测器:#17148。为[yolo]层(Yolo v3和Yolo v4)禁用了每层NMS,因为它们是不正确的-用于cv::dnn::NMSBoxes所有检测。 ONNX:添加对Resnet_backbone(Torchvision)的支持#16887 EfficientDet模型支持:#17384 新样本/演示: 添加文本识别示例:C ++ / Python FlowNet2光流:#16575 英特尔®推理引擎后端(OpenVINO™): 增加了对OpenVINO 2020.3 LTS / 2020.4版本的支持 计划在下一版本中删除对NN Builder API的支持 CUDA后端中的许多修复和优化(感谢@YashasSamaga):PR G-API模块: 在OpenCV后端引入了用于状态内核的新API :GAPI_OCV_KERNEL_ST。有状态内核在各个图执行(标准中更多)或流的视频帧之间(以流模式)保留其状态。 在G-API推出更多面向视频的操作:goodFeaturesToTrack,buildOpticalFlowPyramid,calcOpicalFlowPyrLK。 添加了更多的图像处理内核:Laplacian和双边过滤器。 修复了G-API的OpenCL后端中的潜在崩溃。 OpenCV社区的许多其他伟大贡献,包括但不限于: Obj-C / Swift绑定:#17165 (opencv_contrib)Julia绑定是正在进行的GSoC项目的一部分:#2547 (opencv_contrib)BIMEF:生物启发的多重曝光融合框架,用于弱光图像增强: #2448 为CV_16UC1图像启用Otsu阈值:#16640 为文本检测添加笔划宽度变换算法:#2464 计划在Apache 2许可证上进行下一版本OE-32的 迁移#17491
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值