【CF】1821E-Rearrange Brackets 题解

传送门:1821E
标签:字符串

题目大意

一个规则括号序列是一个可以通过在原始序列的字符之间插入字符 “1” 和 “+” 来转换为正确算术表达式的括号序列。例如:括号序列 “()” 和 “(())” 是规则的(结果表达式是:“(1) + (1)” 和 “((1+1)+1)”);括号序列 “)(”, “(” 和 “)” 不是规则的。给你一个规则括号序列。在一次移动中,你可以移除一对相邻的括号,其中左边的是左括号,右边的是右括号。然后将结果部分按顺序连接起来。这个移动的成本是这对右括号右边的括号数量。规则括号序列的成本是使序列为空所需的移动的最小总成本。实际上,你并没有移除任何括号。相反,你得到了一个规则括号序列和一个整数 ( k )。你可以执行以下操作最多 ( k ) 次:从序列中提取一些括号并将其放回任何位置(在任何两个括号之间,开始或结束;可能在它之前的位置)。执行所有操作后,括号序列必须是规则的。结果规则括号序列的最小可能成本是多少?

输入:第一行包含一个整数 t ——测试用例的数量。每个测试用例的第一行包含一个整数 k ——你可以执行的最大操作数。第二行包含一个非空的规则括号序列,它只包含字符 ‘(’ 和 ‘)’。

输出:对于每个测试用例,输出一个整数——在你执行最多 k 次操作后,规则括号序列的最小可能成本。

算法分析

  • 首先要重新定义RBS的成本。移除每对括号的绝对最小成本是它所在的括号对的数量。这实际上是可以实现的——只需从右到左移除括号对(根据括号对中左括号的位置)。因此,你可以说总成本是所有右括号之后的平衡值之和。或者在所有左括号之前——这些实际上是相同的。
  • 接下来设计动态规划的状态。想象我们不是在移动括号,而是在两个独立的动作中做这件事:将一个括号放入某个缓冲区并将其放入字符串中。我们希望使用 ( dp[pos][open][close][moves] ) ——如果我们处理了 ( pos ) 个括号,缓冲区中有 ( open ) 个左括号,缓冲区中有 ( close ) 个右括号,并且执行了 ( moves ) 次移动,那么这是最小的答案。遗憾的是,这实际上不允许将括号向左移动,因为你必须首先放置括号,然后将其放入缓冲区。这真的会破坏任何东西吗?显然并不会。你可以将这些缓冲区状态从 (-k) 到 (k),并将负值视为贷款。这些状态足以确定字符串当前的平衡。因此,足以更新状态并检查在放置右括号后字符串是否停止成为RBS。总体复杂度:O(nk3)。
  • 现在要证明存在一个最优答案,使得每次移动后序列仍然是RBS。考虑一个最终成为RBS的移动序列。首先,你可以基本重新排列这些移动(可能需要调整确切的位置)。其次,存在一个移动,首先执行,留下一个RBS。执行它并传播证明。切换到另一种表示方式更直观——查看由括号序列诱导的森林。其中的树的根是RBS的最上层的左括号和右括号。它们的子节点是每个括号的内部最上层括号,依此类推。有了这种表示方式,答案实际上是所有顶点深度之和。
  • 最后来移动。让我们将一个左括号向右移动。我们不会在相应的右括号之后移动它,以免破坏RBS。这将如何改变树?它将使相应顶点的一些子节点变成其父节点的子节点。因此,它将减少它们的深度,以及它们后代的深度。那么向左移动呢?这将使一些子节点变成自己的子节点,增加它们的深度(以及它们后代的深度)。类似的分析可以对右括号进行。

代码实现

#include <bits/stdc++.h>
using namespace std;
void solve() {
	int k , bal = 0;
	string s;
	cin >> k >> s;
	map<int , int>last;
	s = '#' + s;
	vector<int>f;
	for(int i = 1 ; i < (int)s.length() ; i++) {
		if(s[i] == '(') bal++;
		else			bal--;
		if(s[i] == ')') {
			f.push_back((i - last[bal]) / 2 - 1);
		}
		last[bal] = i;
	}
	sort(f.begin() , f.end());
	while(k && !f.empty()) k-- , f.pop_back();
	cout << accumulate(f.begin() , f.end() , 0LL) << '\n';
	return;
}
int main() {
	ios_base::sync_with_stdio(0);
	cin.tie(0);
	cout.tie(0);
	int tt = 1;
	cin >> tt;
	while(tt--) solve();
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值