tensorflow 和 pytorch的安装(深度强化学习)

本文介绍了深度强化学习的历史与重要事件,并详细阐述了如何在Ubuntu系统上安装Tensorflow和Pytorch,包括GPU驱动、CUDA、cuDNN的配置,以及Anaconda的安装和环境创建。最后,提供了检查GPU支持的代码,帮助读者验证安装是否成功。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        1989年,Watkins和Dayan将最优化控制理论:包括Bellman方程和马尔科夫决策过程和时序差分(TF)结合提出了著名的Q-learning算法。2015年,Mnih等人创造性的将深度学习和强化学习结合,解决了常规强化学习中的维度爆炸问题,自此深度强化学习得到了广泛的关注和发展。

        强化学习的里程碑事件可以用下图进行概括:

 该图引自深度强化学习的综述性文献T. T. Nguyen, N. D. Nguyen and S. Nahavandi, "Deep Reinforcement Learning for Multiagent Systems: A Review of Challenges, Solutions, and Applications," in IEEE Transactions on Cybernetics, vol. 50, no. 9, pp. 3826-3839, Sept. 2020, doi: 10.1109/TCYB.2020.2977374.

        当然了,本篇文章主要介绍的是tensorflow和pytorch的安装教程,提及深度强化学习的主要原因是作者使用tensorflow和pytorch这两个工具的知识背景是深度强化学习(DRL),也是希望能和对DRL感兴趣的朋友交流学习。废话不多说,上菜!

1 安装显卡驱动和GPU加速库。依据显卡(VIIDIA)型号安装对应的GPU驱动,具体的版本去NVIDIA官网查询

https://www.nvidia.cn/Download/index.aspx?lang=cn

 驱动安装过程中需要注意的就是不要选择精简安装!

        之后查询tensorflow和GPU加速库cudnn的对应版本并进行下载

下载完成后将cudnn包解压后将其中的文件

 复制到

2 安装anaconda。在安装tensorflow和pytorch之前在anaconda官方网站上下载并安装anaconda。 anaconda官网链接https://www.anaconda.com/,唯一需要注意的就是在安装过程中直接选择加入系统路径就可以了。避免安装之后添加的麻烦。

3 安装tensorflow和pytorch

Tensorflow

        第一步:创建tensorflow环境,打开Anaconda Prompt,当前的环境为base,你可以使用以下命令创建和进入

conda create -n env_name python==3.9.0
conda activate env_name

其中的env_name为你自己创建的环境名称,python的版本可以依据个人需要进行修改。

        第二步:安装tensorflow,这里介绍CPU和GPU版本的安装:

pip install tensorflow_cpu==2.10.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install tensorflow_gpu==2.10.0 -i https://pypi.tuna.tsinghua.edu.cn/simple

国内安装需要添加镜像源,这里添加的是清华源。CPU版本通过该命令安装完之后就可以直接“品尝”了。GPU版本需要额外的“添加剂”。

 至此,GPU版本的tensorflow就可以使用了。你可以在tensorflow环境中进入python

         第三步,查询gpu是否可用,命令为

import tensorflow as tf
tf.test.is_gpu_available()

pytorch,这里只介绍gpu版本的安装

        第一步,为pytorch创建一个环境

conda create -n env_name python==3.9.0
conda activate env_name

        第二步,安装pytorch,如果直接使用官网的安装命令,在安装过程中会经常中断

这里提供两种方案解决,

第一种是在官网安装命令中取消两个包的安装(一般也不会使用):

conda install pytorch cudatoolkit=11.6 -c pytorch -c conda-forge

第二种是使用清华源中的库进行安装。在网页中查找到pytorch和cuda的对应版本。

conda install pytorch cudatoolkit=version

这里要注意python,pytorch和cuda版本的对应

        第三步,检查gpu版本的pytorch是否安装成功。进入python

import torch
torch.cuda.is_available()

以上便是tensorflow和pytorch的安装过程。当你拥有了这两个工具后,就可以开启深度强化学习或者深度学习的征程了!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

似-然

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值