积分变换知识点整理1-3

Fourier变换的性质

线性性质

F 1 ( ω ) = F [ f 1 ( t ) ] F_1(\omega)=\mathscr{F}[f_1(t)] F1(ω)=F[f1(t)] F 2 ( ω ) = F [ f 2 ( t ) ] F_2(\omega)=\mathscr{F}[f_2(t)] F2(ω)=F[f2(t)] α \alpha α β \beta β是常数,则
F [ α f 1 ( t ) + β f 2 ( t ) ] = α F [ f 1 ( t ) ] + β F [ f 2 ( t ) ] = α F 1 ( ω ) + β F 2 ( ω ) \mathscr{F}[\alpha f_1(t)+\beta f_2(t)]=\alpha\mathscr{F}[f_1(t)]+\beta\mathscr{F}[f_2(t)]=\alpha F_1(\omega)+\beta F_2(\omega) F[αf1(t)+βf2(t)]=αF[f1(t)]+βF[f2(t)]=αF1(ω)+βF2(ω)

F − 1 [ α F 1 ( ω ) + β F 2 ( ω ) ] = α F − 1 [ F 1 ( ω ) ] + β F − 1 [ F 2 ( ω ) ] = α F 1 ( ω ) + β F 2 ( ω ) \mathscr{F}^{-1}[\alpha F_1(\omega)+\beta F_2(\omega)]=\alpha\mathscr{F}^{-1}[F_1(\omega)]+\beta\mathscr{F}^{-1}[F_2(\omega)]=\alpha F_1(\omega)+\beta F_2(\omega) F1[αF1(ω)+βF2(ω)]=αF1[F1(ω)]+βF1[F2(ω)]=αF1(ω)+βF2(ω)

位移性质

F [ f ( t ± t 0 ) ] = e ± j ω t 0 F [ f ( t ) ] \mathscr{F}[f(t\pm t_0)]=e^{\pm j\omega t_0}\mathscr{F}[f(t)] F[f(t±t0)]=e±jωt0F[f(t)]
F − 1 [ F ( ω ∓ ω 0 ) ] = f ( t ) e ± j ω 0 t \mathscr{F}^{-1}[F(\omega \mp \omega_0)]=f(t)e^{\pm j\omega_0t} F1[F(ωω0)]=f(t)e±jω0t

微分性质

如果 f ( t ) f(t) f(t) ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)上连续或只有有限个可去间断点,且当 ∣ t ∣ → 0 |t|\to 0 t0时, f ( t ) → 0 f(t)\to 0 f(t)0,则
F [ f ′ ( t ) ] = j ω F [ f ( t ) ] \mathscr{F}[f'(t)]=j\omega\mathscr{F}[f(t)] F[f(t)]=jωF[f(t)]
推论
  若 f ( k ) ( t ) f^{(k)}(t) f(k)(t) ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)上连续或只有有限个可去间断点,且 lim ⁡ ∣ t ∣ → + ∞ f ( k ) ( t ) = 0 , k = 0 , 1 , 2 , ⋅ ⋅ ⋅ , n − 1 \lim\limits_{|t|\to +\infty}f^{(k)}(t)=0,k=0,1,2,···,n-1 t+limf(k)(t)=0,k=0,1,2,n1,则有
F [ f ( n ) ( t ) ] = ( j ω ) n F [ f ( t ) ] \mathscr{F}[f^{(n)}(t)]=(j\omega)^n\mathscr{F}[f(t)] F[f(n)(t)]=(jω)nF[f(t)]
同样
d n d ω n F ( ω ) = ( − j ) n F [ t n f ( t ) ] \frac{d^n}{d\omega^n}F(\omega)=(-j)^n\mathscr{F}[t^nf(t)] dωndnF(ω)=(j)nF[tnf(t)]

积分性质

如果当 t → + ∞ t\to +\infty t+时, g ( t ) = ∫ − ∞ t f ( t )   d t → 0 g(t)=\displaystyle\int_{-\infty}^{t}f(t)\,dt\to0 g(t)=tf(t)dt0,那么 F [ ∫ − ∞ t f ( t ) ] = 1 j ω F [ f ( t ) ] \mathscr{F}\left[\int_{-\infty}^{t}f(t)\right]=\frac{1}{j\omega}\mathscr{F}[f(t)] F[tf(t)]=jω1F[f(t)]

乘积定理

F 1 ( ω ) = F [ f 1 ( t ) ] F_1(\omega)=\mathscr{F}[f_1(t)] F1(ω)=F[f1(t)] F 2 ( ω ) = F [ f 2 ( t ) ] F_2(\omega)=\mathscr{F}[f_2(t)] F2(ω)=F[f2(t)],则
∫ − ∞ + ∞ f 1 ( t ) ‾ f 2 ( t )   d t = 1 2 π ∫ − ∞ + ∞ F 1 ( ω ) ‾ F 2 ( ω ) d ω \int_{-\infty}^{+\infty}\overline{f_1(t)}f_2(t)\,dt=\frac{1}{2\pi}\int_{-\infty}^{+\infty}\overline{F_1(\omega)}F_2(\omega)d\omega +f1(t)f2(t)dt=2π1+F1(ω)F2(ω)dω
∫ − ∞ + ∞ f 2 ( t ) ‾ f 1 ( t )   d t = 1 2 π ∫ − ∞ + ∞ F 2 ( ω ) ‾ F 1 ( ω ) d ω \int_{-\infty}^{+\infty}\overline{f_2(t)}f_1(t)\,dt=\frac{1}{2\pi}\int_{-\infty}^{+\infty}\overline{F_2(\omega)}F_1(\omega)d\omega +f2(t)f1(t)dt=2π1+F2(ω)F1(ω)dω
其中 f 1 ( t ) ‾ \overline{f_1(t)} f1(t) f 2 ( t ) ‾ \overline{f_2(t)} f2(t) F 1 ( ω ) ‾ \overline{F_1(\omega)} F1(ω) F 2 ( ω ) ‾ \overline{F_2(\omega)} F2(ω)分别为 f 1 ( t ) f_1(t) f1(t), f 2 ( t ) f_2(t) f2(t), F 1 ( ω ) F_1(\omega) F1(ω) F 2 ( ω ) F_2(\omega) F2(ω)的共轭函数

能量积分

  若 F ( ω ) = F [ f ( t ) ] F(\omega)=\mathscr{F}[f(t)] F(ω)=F[f(t)],则有
∫ − ∞ + ∞ [ f ( t ) ] 2 d t = 1 2 π ∫ − ∞ + ∞ ∣ F ( ω ) ∣ 2 d ω \int_{-\infty}^{+\infty}[f(t)]^2dt=\frac{1}{2\pi}\int_{-\infty}^{+\infty}|F(\omega)|^2d\omega +[f(t)]2dt=2π1+F(ω)2dω
称为Parseval等式
能量密度函数(或称能量谱密度
S ( ω ) = ∣ F ( ω ) ∣ 2 S(\omega)=|F(\omega)|^2 S(ω)=F(ω)2
显然 S ( ω ) = S ( − ω ) S(\omega)=S(-\omega) S(ω)=S(ω)
—————————————————————————————————
F ( ω ) = F [ f ( t ) ] F(\omega)=\mathscr{F}[f(t)] F(ω)=F[f(t)]
F [ f ( t ) cos ⁡ ω 0 t ] = 1 2 [ F ( ω ) + F ( ω 0 ) ] \mathscr{F}[f(t)\cos\omega_0t]=\frac{1}{2}[F(\omega)+F(\omega_0)] F[f(t)cosω0t]=21[F(ω)+F(ω0)]
F [ f ( t ) sin ⁡ ω 0 t ] = 1 2 j [ F ( ω − ω 0 ) − F ( ω + ω 0 ) ] \mathscr{F}[f(t)\sin\omega_0t]=\frac{1}{2j}[F(\omega-\omega_0)-F(\omega+\omega_0)] F[f(t)sinω0t]=2j1[F(ωω0)F(ω+ω0)]

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
大模型安全评估测试题大模型安全评估测试题关键词库生成内容测试题库应拒答测试题库非拒答测试题大模型安全评估测试题大模型安全评估测试题关键词库生成内容测试题库应拒答测试题库非拒答测试题大模型安全评估测试题大模型安全评估测试题关键词库生成内容测试题库应拒答测试题库非拒答测试题大模型安全评估测试题大模型安全评估测试题关键词库生成内容测试题库应拒答测试题库非拒答测试题大模型安全评估测试题大模型安全评估测试题关键词库生成内容测试题库应拒答测试题库非拒答测试题大模型安全评估测试题大模型安全评估测试题关键词库生成内容测试题库应拒答测试题库非拒答测试题大模型安全评估测试题大模型安全评估测试题关键词库生成内容测试题库应拒答测试题库非拒答测试题大模型安全评估测试题大模型安全评估测试题关键词库生成内容测试题库应拒答测试题库非拒答测试题大模型安全评估测试题大模型安全评估测试题关键词库生成内容测试题库应拒答测试题库非拒答测试题大模型安全评估测试题大模型安全评估测试题关键词库生成内容测试题库应拒答测试题库非拒答测试题大模型安全评估测试题大模型安全评估测试题关键词库生成内容测试题库应拒答测试题库非拒答测试题大模型安全
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值