DataWhale-CV-task03 字符识别模型

@[TOC](基于CNN的字符识别模型)

1 学习目标

  • 学习CNNj基础和原理
  • 使用pytorch框架构建CNN模型,并完成训练

2 CNN介绍

卷积神经网络(CNN)是一类特殊的人工神经网络,是深度学习中重要的一个分支。CNN在很多领域都表现的很好,精度和速度比传统计算学习算法高很多,特比是计算机视觉领域,CNN是解决图像分类、图像检索、物体检测和语义分割的主流模型。
CNN每一层有众多的卷积核组成,每个卷积核对输入的像素进行卷积操作, 得到下一次的输入。随着网络层增加卷积核,会逐渐扩大感受野,并缩减图像的尺寸。

卷积核的工作方式
CNN是一种层次模型,输入的是原始的像素数据,CNN通过卷积(convolution)、池化(pooling)、非线性激活函数(non-linear activation function)和全连接层(fully connected layer)构成。
如下的LeNet网络结构,是非常经典的字符识别模型。两个卷积层,两个池化层,两个全连接层组成。卷积核都是5 * 5,stride = 1, 池化层为最大池化。
在这里插入图片描述
通过多次卷积核池化,CNN的最后一层将输入的图像像素映射为具体的输出。如在分类任务中会转换为不同类别的概率输出,然后计算真实标签与CNN模型的预测结果的差异,并通过反向传播更新每层的参数,并在更新完成后再次前向传播,如此反复直到训练完成。
与传统的机器学习模型相比,CNN具有一种端对端(End to End)的思路。在CNN训练的过程中是直接从图像像素到最终的输出,并不涉及具体的特征提取和构建模型的过程,也不需要人工的参与。

3 Pytorch构建CNN模型

Pytorch构建CNN模型很简单,只需要定义好模型的参数和正向传播即可,Pytorch会根据正向传播自动计算反向传播。

 # CNN模型包括两个卷积层、6个全连接层
import torch
torch.manual_seed(0)
torch.backends.cundnn.deterministic = False
torch.backends.cudnn.benchmark = True
imoort torchvision.models ad models
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data.dataset import Dataset

<div STYLE="page-break-after:always;"></div>
# 定义模型
class SVHN_Model1(nn.Module):
	def __init__(self):
		super(SVHN_Model1,self).__init__()
		#CNN提取特征模块
		self.cnn = nn.Sequential(
			nn.Conv2d(3, 16, kernel_size=(3,3), stride=(2,2)),
			nn.ReLU(),
			nn.MaxPool2d(2),
			nn.Conv2d(16, 32, kernel_size=(3,3), stride=(2,2)),
			nn.ReLU(),
			nn.MaxPool2d(2),
		)
		
		self.fc1 = nn.Linear(32*3*7,11)
		self.fc2 = nn.Linear(32*3*7,11)
		self.fc3 = nn.Linear(32*3*7, 11)
		self.fc4 = nn.Linear(32*3*7, 11)
		self.fc5 = nn.Linear(32*3*7, 11)
		self.fc6 = nn.Linear(32*3*7, 11)

 	def forward(self, img):
 		feat = self.cnn(img)
 		feat = feat.view(feat.shape[8], -1)
 		c1 = self.fc1(feat)
 		c2 = sefl.fc2(feat)
 		c3 = self.fc3(feat)
 		c4 = self.fc4(feat)
 		c5 = self.fc5(feat)
 		c6 = self.fc6(feat)
		return c1, c2, c3, c4, c5, c6

model = SVHN_Model1()

# 训练代码
<div STYLE="page-break-after: always;"></div>
# 损失函数
criterion = nn.CrossEntropyLoss()
<div STYLE="page-break-after: always;"></div>
# 优化器
optimizer torch.optim.Adam(model, parameters(), 0.05)	

loss_plot, c0_plot = [], []
<div STYLE="page-break-after: always;"></div>

# 迭代10个Epoch
for epoch in range(10):
	for data in train_loader:
		c0, c1, c2, c3, c4, c5 = model(data[0])
		loss = criterion(c0, data[1][:, 0] + \
					criterion(c1, data[1][:, 1] + \
					criterion(c2, data[1][:, 2] + \
					criterion(c3, data[1][:, 3] + \
					criterion(c4, data[1][:, 4] + \
					criterion(c5, data[1][:, 5] + \
					criterion(c5, data[1][:, 6])
		loss /= 6
		optimizer.zero_grad()
		loss.backward()
		optimizer.step()

	
		loss_plot_append(loss.item())
		c0_plot.append((c0.argmax(1) == data[1][:,0].sum().item()*1.0 / c0.shape[0])
	print(epoch)		

在训练完成后我们可以将训练过程中的损失函数和准确率进行绘制, 如下图所示,从图中可以看出模型的损失在迭代过程中逐渐减小,字符预测的准确率逐渐升高。

在这里插入图片描述
为了提高精度,我们也可以使用在ImageNet数据集上的预训练模型,具体方法如下:

class SVHN_Model2(nn.Module):
	def __init__(self):
		super(SVHN_Model2, self),__init__()
	
		model_conv = models.resnet18(pretrained=True)
		model_conv .avgpool = nn.AdaptiveAvgPool2d(1)
		model_conv = nn.Sequential(*list(model_conv.children())[:-1])
		self.cnn = model_conv
	
		self.fc1 = nn.Linear(512, 11)
		self.fc2 = nn.Linear(512, 11)
		self.fc3 = nn.Linear(512, 11)
		self.fc4 = nn.Linear(512, 11)
		self.fc5 = nn.Linear(512, 11)

	def forward(self, img):
		feat = self.cnn(img)
		feat = feat.view(feat.shape[0], -1)
		c1 = self.fc1(feat)
		c2 = self.fc2(feat)
		c3 = self.fc3(feat)
		c4 = self.fc4(feat)
		c5 = self.fc5(feat)
		return c1, c2, c3, c4, c5
		
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值