题目:
在一个二维数组中(每个一维数组的长度相同),每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。
这道题刚开始看到的时候第一反应居然是两次二分,横着一次竖着一次,结果画了一下发现不对,一时又想不出别的方法,就看了剑指的解析,不得不说这个想法真是妙啊,我就想不出来。
剑指上最开始提供的引入是,如果从这个矩阵中随便选一个数字判断target与它的关系,那么有三种情况:相等就找着了,target更大就找除了左上角的其他区域,target更小就找除了右下角以外的其他区域。于是,我们可以通过巧妙地构造每次选取的数字来进行快速查找——从右上角开始,或者从左下角开始。
从右上角开始的话,如果target较小,那么下次查找的范围就应该是除了最右边那列以外的所有,如果target较大,那么下次的范围就是除了第一行以外的所有,通过这个规律来缩小查找范围。根据target和当前查找范围内最右上角的元素的关系即可进行查找。如果该元素不在矩阵内,那么右上角会逐渐往左直至超出范围、或者往下超出范围。清楚了查找过程,写代码就很简单啦,并没有涉及到特殊的数据结构或者算法。时间复杂度应该是O(n),空间复杂度O(1):
class Solution {
public:
bool Find(int target, vector<vector<int> > array) {
int row = 0;
int col = array[0].size() - 1;
while (col >= 0 && row < array.size()) {
int flag = array[row][col];
if (target == flag) {
return true;
}
else if (target < flag) {
col--;
}
else {
row++;
}
}
return false;
}
};