一种线性方程约束下生成随机数修正的一般性方法(中)

17 篇文章 0 订阅
16 篇文章 0 订阅

目录

    本文内容接续博客 《一种线性方程约束下生成随机数修正的一般性方法(上)》

修正方法

    情况2.2.2.2.2.1.1:当 ∑ j = 1 , a ~ k , j > 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right) j=1,a~k,j>0NRa~k,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~k,j(xgen,R+jxR+j) ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right) j=1,a~k,j>0NRa~i,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~i,j(xgen,R+jxR+j)同号时, b ~ ‾ c o r , k ′ ( i ) \underline{\tilde{b}}'_{cor, k} \left( i \right) b~cor,k(i) b ~ ‾ c o r , k ′ ( i ) \overline{\tilde{b}}'_{cor, k} \left( i \right) b~cor,k(i) b ~ ‾ c o r , k ′ ′ ( i ) \underline{\tilde{b}}''_{cor, k} \left( i \right) b~cor,k′′(i) b ~ ‾ c o r , k ′ ′ ( i ) \overline{\tilde{b}}''_{cor, k} \left( i \right) b~cor,k′′(i)分别满足
b ~ ‾ c o r , k ′ ( i ) = ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j ) + ∑ j = 1 , a ~ k , j > 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) × [ ( ∑ j = 1 , a ~ i , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ i , j < 0 N − R a ~ i , j x ‾ R + j ) − ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j = 0 N − R a ~ i , j x g e n , R + j ) ] b ~ ‾ c o r , k ′ ( i ) = ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j ) + ∑ j = 1 , a ~ k , j > 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) × [ ( ∑ j = 1 , a ~ i , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ i , j < 0 N − R a ~ i , j x ‾ R + j ) − ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j = 0 N − R a ~ i , j x g e n , R + j ) ] b ~ ‾ c o r , k ′ ′ ( i ) = ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j ) + ∑ j = 1 , a ~ k , j > 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) × [ ( b R R E F , i − x ‾ i ) − ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j = 0 N − R a ~ i , j x g e n , R + j ) ] b ~ ‾ c o r , k ′ ′ ( i ) = ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j ) + ∑ j = 1 , a ~ k , j > 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) × [ ( b R R E F , i − x ‾ i ) − ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j = 0 N − R a ~ i , j x g e n , R + j ) ] \begin{equation}\tag{21} \begin{split} \underline{\tilde{b}}'_{cor, k} \left( i \right) &= \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} \right) + \dfrac{ \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right)} {\displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right)} \times \left[ \left( \displaystyle \sum_{j = 1, \tilde{a}_{i, j} > 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{i, j} < 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} \right) - \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} = 0}^{N - R} \tilde{a}_{i, j} x_{gen, R + j} \right) \right] \\ \overline{\tilde{b}}'_{cor, k} \left( i \right) &= \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} \right) + \dfrac{ \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right)} {\displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right)} \times \left[ \left( \displaystyle \sum_{j = 1, \tilde{a}_{i, j} > 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{i, j} < 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} \right) - \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} = 0}^{N - R} \tilde{a}_{i, j} x_{gen, R + j} \right) \right] \\ \underline{\tilde{b}}''_{cor, k} \left( i \right) &= \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} \right) + \dfrac{ \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right)} {\displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right)} \times \left[ \left( b_{RREF, i} - \overline{x}_i \right) - \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} = 0}^{N - R} \tilde{a}_{i, j} x_{gen, R + j} \right) \right] \\ \overline{\tilde{b}}''_{cor, k} \left( i \right) &= \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} \right) + \dfrac{ \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right)} {\displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right)} \times \left[ \left( b_{RREF, i} - \underline{x}_i \right) - \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} = 0}^{N - R} \tilde{a}_{i, j} x_{gen, R + j} \right) \right] \\ \end{split} \end{equation} b~cor,k(i)b~cor,k(i)b~cor,k′′(i)b~cor,k′′(i)= j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j +j=1,a~k,j>0NRa~i,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~i,j(xgen,R+jxR+j)j=1,a~k,j>0NRa~k,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~k,j(xgen,R+jxR+j)× j=1,a~i,j>0NRa~i,jxR+j+j=1,a~i,j<0NRa~i,jxR+j j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j+j=1,a~k,j=0NRa~i,jxgen,R+j = j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j +j=1,a~k,j>0NRa~i,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~i,j(xgen,R+jxR+j)j=1,a~k,j>0NRa~k,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~k,j(xgen,R+jxR+j)× j=1,a~i,j>0NRa~i,jxR+j+j=1,a~i,j<0NRa~i,jxR+j j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j+j=1,a~k,j=0NRa~i,jxgen,R+j = j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j +j=1,a~k,j>0NRa~i,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~i,j(xgen,R+jxR+j)j=1,a~k,j>0NRa~k,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~k,j(xgen,R+jxR+j)× (bRREF,ixi) j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j+j=1,a~k,j=0NRa~i,jxgen,R+j = j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j +j=1,a~k,j>0NRa~i,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~i,j(xgen,R+jxR+j)j=1,a~k,j>0NRa~k,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~k,j(xgen,R+jxR+j)× (bRREF,ixi) j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j+j=1,a~k,j=0NRa~i,jxgen,R+j (21)
    情况2.2.2.2.2.1.2:当 ∑ j = 1 , a ~ k , j > 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right) j=1,a~k,j>0NRa~k,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~k,j(xgen,R+jxR+j) ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right) j=1,a~k,j>0NRa~i,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~i,j(xgen,R+jxR+j)异号时, b ~ ‾ c o r , k ′ ( i ) \underline{\tilde{b}}'_{cor, k} \left( i \right) b~cor,k(i) b ~ ‾ c o r , k ′ ( i ) \overline{\tilde{b}}'_{cor, k} \left( i \right) b~cor,k(i) b ~ ‾ c o r , k ′ ′ ( i ) \underline{\tilde{b}}''_{cor, k} \left( i \right) b~cor,k′′(i) b ~ ‾ c o r , k ′ ′ ( i ) \overline{\tilde{b}}''_{cor, k} \left( i \right) b~cor,k′′(i)分别满足
b ~ ‾ c o r , k ′ ( i ) = ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j ) + ∑ j = 1 , a ~ k , j > 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) × [ ( ∑ j = 1 , a ~ i , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ i , j < 0 N − R a ~ i , j x ‾ R + j ) − ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j = 0 N − R a ~ i , j x g e n , R + j ) ] b ~ ‾ c o r , k ′ ( i ) = ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j ) + ∑ j = 1 , a ~ k , j > 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) × [ ( ∑ j = 1 , a ~ i , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ i , j < 0 N − R a ~ i , j x ‾ R + j ) − ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j = 0 N − R a ~ i , j x g e n , R + j ) ] b ~ ‾ c o r , k ′ ( i ) = ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j ) + ∑ j = 1 , a ~ k , j > 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) × [ ( b R R E F , i − x ‾ i ) − ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j = 0 N − R a ~ i , j x g e n , R + j ) ] b ~ ‾ c o r , k ′ ( i ) = ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j ) + ∑ j = 1 , a ~ k , j > 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) × [ ( b R R E F , i − x ‾ i ) − ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j = 0 N − R a ~ i , j x g e n , R + j ) ] \begin{equation}\tag{22} \begin{split} \underline{\tilde{b}}'_{cor, k} \left( i \right) &= \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} \right) + \dfrac{ \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right)} {\displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right)} \times \left[ \left( \displaystyle \sum_{j = 1, \tilde{a}_{i, j} > 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{i, j} < 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} \right) - \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} = 0}^{N - R} \tilde{a}_{i, j} x_{gen, R + j} \right) \right] \\ \overline{\tilde{b}}'_{cor, k} \left( i \right) &= \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} \right) + \dfrac{ \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right)} {\displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right)} \times \left[ \left( \displaystyle \sum_{j = 1, \tilde{a}_{i, j} > 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{i, j} < 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} \right) - \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} = 0}^{N - R} \tilde{a}_{i, j} x_{gen, R + j} \right) \right] \\ \underline{\tilde{b}}'_{cor, k} \left( i \right) &= \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} \right) + \dfrac{ \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right)} {\displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right)} \times \left[ \left( b_{RREF, i} - \underline{x}_i \right) - \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} = 0}^{N - R} \tilde{a}_{i, j} {x}_{gen, R + j} \right) \right] \\ \overline{\tilde{b}}'_{cor, k} \left( i \right) &= \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} \right) + \dfrac{ \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right)} {\displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right)} \times \left[ \left( b_{RREF, i} - \overline{x}_i \right) - \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} = 0}^{N - R} \tilde{a}_{i, j} {x}_{gen, R + j} \right) \right] \\ \end{split} \end{equation} b~cor,k(i)b~cor,k(i)b~cor,k(i)b~cor,k(i)= j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j +j=1,a~k,j>0NRa~i,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~i,j(xgen,R+jxR+j)j=1,a~k,j>0NRa~k,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~k,j(xgen,R+jxR+j)× j=1,a~i,j>0NRa~i,jxR+j+j=1,a~i,j<0NRa~i,jxR+j j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j+j=1,a~k,j=0NRa~i,jxgen,R+j = j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j +j=1,a~k,j>0NRa~i,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~i,j(xgen,R+jxR+j)j=1,a~k,j>0NRa~k,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~k,j(xgen,R+jxR+j)× j=1,a~i,j>0NRa~i,jxR+j+j=1,a~i,j<0NRa~i,jxR+j j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j+j=1,a~k,j=0NRa~i,jxgen,R+j = j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j +j=1,a~k,j>0NRa~i,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~i,j(xgen,R+jxR+j)j=1,a~k,j>0NRa~k,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~k,j(xgen,R+jxR+j)× (bRREF,ixi) j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j+j=1,a~k,j=0NRa~i,jxgen,R+j = j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j +j=1,a~k,j>0NRa~i,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~i,j(xgen,R+jxR+j)j=1,a~k,j>0NRa~k,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~k,j(xgen,R+jxR+j)× (bRREF,ixi) j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j+j=1,a~k,j=0NRa~i,jxgen,R+j (22)

    将 x c o r , R + 1 , ⋯   , x c o r , N x_{cor, R + 1}, \cdots, x_{cor, N} xcor,R+1,,xcor,N代入式(13),则修正后的 x c o r , 1 , ⋯   , x c o r , R x_{cor, 1}, \cdots, x_{cor, R} xcor,1,,xcor,R满足
x c o r , i = b R R E F , i − ∑ j = 1 N − R a ~ i , j x c o r , R + j , i ∈ { 1 , ⋯   , R } \begin{equation}\tag{23} x_{cor, i} = b_{RREF, i} - \displaystyle \sum_{j = 1}^{N - R} \tilde{a}_{i, j} x_{cor,R + j}, i ∈ \{ 1, \cdots, R \} \end{equation} xcor,i=bRREF,ij=1NRa~i,jxcor,R+j,i{1,,R}(23)
    显然,若 b ~ c o r , k \tilde{b}_{cor, k} b~cor,k不满足式(19)所示的约束条件,则必存在 i ∈ { 1 , ⋯   , R } i ∈ \{ 1, \cdots, R \} i{1,,R},使得 x c o r , i x_{cor, i} xcor,i不能满足式(1)中的上下界约束,进而无法将 x g e n \boldsymbol{x_{gen}} xgen修正为满足式(1)中所有约束条件的 x c o r \boldsymbol{x_{cor}} xcor

    情况2.2.2.2.2.2:若 ∑ j = 1 N − R a ~ k , j x g e n , R + j < b R R E F , k − x ‾ k ≤ b ~ c o r , k \displaystyle \sum_{j = 1}^{N - R} \tilde{a}_{k, j} x_{gen, R + j} < b_{RREF, k} - \underline{x}_k ≤ \tilde{b}_{cor, k} j=1NRa~k,jxgen,R+j<bRREF,kxkb~cor,k,则选取式(15)中的第 k k k个约束条件,依照博客《一种单线性方程约束下的生成随机数修正方法(结论与应用)》中的式(4),将 x g e n , R + 1 , ⋯   , x g e n , N x_{gen, R + 1}, \cdots, x_{gen, N} xgen,R+1,,xgen,N修正为 x c o r , R + 1 , ⋯   , x c o r , N x_{cor, R + 1}, \cdots, x_{cor, N} xcor,R+1,,xcor,N
x c o r , R + j = { b ~ c o r , k − ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ k , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ k , j x ‾ R + j ) ∑ j = 1 , a ~ k , j > 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) ( x g e n , R + j − x ‾ R + j ) + x ‾ R + j ( a ~ k , j > 0 ) x g e n , R + j ( a ~ k , j = 0 ) b ~ c o r , k − ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ k , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ k , j x ‾ R + j ) ∑ j = 1 , a ~ k , j > 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) ( x g e n , R + j − x ‾ R + j ) + x ‾ R + j ( a ~ k , j < 0 ) \begin{equation}\tag{24} x_{cor, R + j} = \begin{cases} \dfrac{\tilde{b}_{cor, k} - \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{k, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{k, j} \underline{x}_{R + j} \right)} {\displaystyle \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right) + \sum_{j = 1,\tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right)} \left( x_{gen, R + j} - \overline{x}_{R + j} \right) + \overline{x}_{R + j} & \left( \tilde{a}_{k, j} > 0 \right) \\ x_{gen, R + j} & \left( \tilde{a}_{k, j} = 0 \right) \\ \dfrac{\tilde{b}_{cor, k} - \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{k, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{k, j} \underline{x}_{R + j} \right)} {\displaystyle \sum_{j = 1,\tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{k, j} \left(x_{gen, R + j} - \overline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right)}\left( x_{gen, R + j} - \underline{x}_{R + j} \right)+\underline{x}_{R + j} & \left( \tilde{a}_{k, j} < 0 \right) \\ \end{cases} \end{equation} xcor,R+j= j=1,a~k,j>0NRa~k,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~k,j(xgen,R+jxR+j)b~cor,k j=1,a~k,j>0NRa~k,jxR+j+j=1,a~k,j<0NRa~k,jxR+j (xgen,R+jxR+j)+xR+jxgen,R+jj=1,a~k,j>0NRa~k,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~k,j(xgen,R+jxR+j)b~cor,k j=1,a~k,j>0NRa~k,jxR+j+j=1,a~k,j<0NRa~k,jxR+j (xgen,R+jxR+j)+xR+j(a~k,j>0)(a~k,j=0)(a~k,j<0)(24)
由博客《一种单线性方程约束下的生成随机数修正方法(结论与应用)》的讨论可知,修正后的 x c o r , R + 1 , ⋯   , x c o r , N x_{cor, R + 1}, \cdots, x_{cor, N} xcor,R+1,,xcor,N既满足式(15)中的第 k k k个约束条件,又满足式(1)中对 x R + 1 , ⋯   , x R + j , ⋯   , x N x_{R + 1}, \cdots, x_{R + j}, \cdots, x_N xR+1,,xR+j,,xN的上下界约束,但无法保证满足式(15)中剩余的约束条件。为使其满足所有约束条件,须将修正后的 x c o r , R + 1 , ⋯   , x c o r , N x_{cor, R + 1}, \cdots, x_{cor, N} xcor,R+1,,xcor,N代入式(15),并与式(17)联立,可知 b ~ c o r , k \tilde{b}_{cor, k} b~cor,k须满足
b ~ ‾ c o r , k ≤ b ~ c o r , k ≤ b ~ ‾ c o r , k \begin{equation}\tag{25} \underline{\tilde{b}}_{cor, k} ≤ \tilde{b}_{cor, k} ≤ \overline{\tilde{b}}_{cor, k} \end{equation} b~cor,kb~cor,kb~cor,k(25)
其中: b ~ ‾ c o r , k \underline{\tilde{b}}_{cor, k} b~cor,k b ~ ‾ c o r , k \overline{\tilde{b}}_{cor, k} b~cor,k分别满足
b ~ ‾ c o r , k ≤ b ~ c o r , k ≤ b ~ ‾ c o r , k \begin{equation}\tag{26} \underline{\tilde{b}}_{cor, k} ≤ \tilde{b}_{cor, k} ≤ \overline{\tilde{b}}_{cor, k} \end{equation} b~cor,kb~cor,kb~cor,k(26)
其中: b ~ ‾ c o r , k \underline{\tilde{b}}_{cor, k} b~cor,k b ~ ‾ c o r , k \overline{\tilde{b}}_{cor, k} b~cor,k分别满足
b ~ ‾ c o r , k = max ⁡ i = 1 R [ b ~ ‾ c o r , k ′ ( i ) , b ~ ‾ c o r , k ′ ′ ( i ) ] b ~ ‾ c o r , k = min ⁡ i = 1 R [ b ~ ‾ c o r , k ′ ( i ) , b ~ ‾ c o r , k ′ ′ ( i ) ] \begin{equation}\tag{27} \begin{split} \underline{\tilde{b}}_{cor, k} &= \max_{i = 1}^R \left[ \underline{\tilde{b}}'_{cor, k} \left( i \right), \underline{\tilde{b}}''_{cor, k} \left( i \right) \right] \\ \overline{\tilde{b}}_{cor, k} &= \min_{i = 1}^R \left[ \overline{\tilde{b}}'_{cor, k} \left( i \right), \overline{\tilde{b}}''_{cor, k} \left( i \right) \right] \\ \end{split} \end{equation} b~cor,kb~cor,k=i=1maxR[b~cor,k(i),b~cor,k′′(i)]=i=1minR[b~cor,k(i),b~cor,k′′(i)](27)

    剩余内容参见博客 《一种线性方程约束下生成随机数修正的一般性方法(下)》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Academia1998

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值