线性方程约束下修正方法的可行性分析(演绎推理,一)

17 篇文章 0 订阅
16 篇文章 0 订阅

前言

    博客《一种线性方程约束下生成随机数修正的一般性方法(上)》《一种线性方程约束下生成随机数修正的一般性方法(中)》《一种线性方程约束下生成随机数修正的一般性方法(下)》给出了生成随机数不满足线性方程约束时的修正公式,该修正公式既适用于单线性方程约束,也适用于多线性方程约束,可以作为线性方程约束下生成随机数修正的一般性方法。但上述博客未能判断修正后的结果是否满足变量上下限约束和线性方程约束,即未能完成对修正方法所得结果的可行性分析。为进一步完善生成随机数修正方法的理论框架,本系列博客将首先给出单线性方程约束问题可行性定理和多线性方程约束问题可行性定理,作为分别判断线性方程约束问题的充分必要条件,然后利用上述定理研究修正结果与线性方程约束问题可行性之间的关系,通过修正结果的可行性判断线性方程约束问题的可行性,并基此设计线性约束下生成随机数修正方法的可执行程序。
    可行性分析系列博客
    1. 《线性方程约束下修正方法的可行性分析(演绎推理,一)》
    2. 《线性方程约束下修正方法的可行性分析(演绎推理,二)》
    3. 《线性方程约束下修正方法的可行性分析(演绎推理,三)》
    4. 《线性方程约束下修正方法的可行性分析(演绎推理,四)》
    5. 《线性方程约束下修正方法的可行性分析(演绎推理,五)》
    6. 《线性方程约束下修正方法的可行性分析(演绎推理,六)》
    7. 《线性方程约束下修正方法的可行性分析(程序设计)》
    8. 《线性方程约束下修正方法的可行性分析(实例应用)》

单线性方程约束下修正方法的可行性分析

    单线性方程约束对应于博客《一种线性方程约束下生成随机数修正的一般性方法(上)》中的情况2.2.1,首先需要求证单线性方程约束问题可行性定理,并结合利用博客《一种线性方程约束下生成随机数修正的一般性方法(上)》所提修正方法得到的修正结果取值范围,探究其与单线性方程约束问题可行性定理之间的联系,进而达到通过修正解的结果即可判定方程可行性的目的。

单线性方程约束问题可行性定理

    定理1:对于博客《一种线性方程约束下生成随机数修正的一般性方法(上)》式(1)所示问题,若经系数矩阵行最简形变换后的常数向量 b R R E F \boldsymbol{b_{RREF}} bRREF自第 ( R + 1 ) \left( R + 1 \right) (R+1)列到第 M M M列不存在非零元素,且线性方程组对应系数矩阵的秩 R = 1 R = 1 R=1,则问题有解的充分必要条件 ∑ j = 1 , a 1 , j > 0 N a 1 , j x ‾ j + ∑ j = 1 , a 1 , j < 0 N a 1 , j x ‾ j ≤ b 1 ≤ ∑ j = 1 , a 1 , j > 0 N a 1 , j x ‾ j + ∑ j = 1 , a 1 , j < 0 N a 1 , j x ‾ j \displaystyle \sum_{j = 1, a_{1, j} > 0}^{N} a_{1, j} \underline{x}_j + \displaystyle\sum_{j = 1, a_{1, j} < 0}^{N} a_{1, j} \overline{x}_j ≤ b_1 ≤ \displaystyle \sum_{j = 1, a_{1, j} > 0}^{N} a_{1, j} \overline{x}_j + \displaystyle \sum_{j = 1, a_{1, j} < 0}^{N} a_{1, j} \underline{x}_j j=1,a1,j>0Na1,jxj+j=1,a1,j<0Na1,jxjb1j=1,a1,j>0Na1,jxj+j=1,a1,j<0Na1,jxj

    证明1:首先求证必要性,由于博客《一种线性方程约束下生成随机数修正的一般性方法(上)》式(1)所示问题中,变量 x j x_j xj存在上下界约束 x j ∈ [ x ‾ j , x ‾ j ] , j ∈ { 1 , ⋯   , N } x_j ∈ \left[ \underline{x}_j, \overline{x}_j \right], j ∈ \{ 1, \cdots, N \} xj[xj,xj],j{1,,N},因此欲使该问题有解,则所求的 x j x_j xj必须在上下界范围内,将 x j x_j xj乘以方程中对应的系数 a 1 , j a_{1, j} a1,j,不难得到 a 1 , j x j a_{1, j} x_j a1,jxj的取值范围为
a 1 , j x ‾ j ( a 1 , j > 0 ) 0 ( a 1 , j = 0 ) a 1 , j x ‾ j ( a 1 , j < 0 ) } ≤ a 1 , j x j ≤ { a 1 , j x ‾ j ( a 1 , j > 0 ) 0 ( a 1 , j = 0 ) a 1 , j x ‾ j ( a 1 , j 0 ) \begin{equation} \begin{rcases} a_{1, j} \underline{x}_j & \left( a_{1, j} > 0 \right) \\ 0 & \left( a_{1, j} = 0 \right) \\ a_{1, j} \overline{x}_j & \left( a_{1, j} < 0 \right) \end{rcases} ≤ a_{1, j} x_j ≤ \begin{cases} a_{1, j} \overline{x}_j & \left( a_{1, j} > 0 \right) \\ 0 & \left( a_{1, j} = 0 \right) \\ a_{1, j}\underline{x}_j & \left( a_{1, j} 0 \right) \\ \end{cases} \end{equation} a1,jxj0a1,jxj(a1,j>0)(a1,j=0)(a1,j<0) a1,jxj a1,jxj0a1,jxj(a1,j>0)(a1,j=0)(a1,j0)
    将 a 1 , j x j a_{1, j} x_j a1,jxj j = 1 j = 1 j=1 j = N j = N j=N进行求和可得
∑ j = 1 , a 1 , j > 0 N a 1 , j x ‾ j + ∑ j = 1 , a 1 , j < 0 N a 1 , j x ‾ j ≤ ∑ j = 1 N a 1 , j x j = b 1 ≤ ∑ j = 1 , a 1 , j > 0 N a 1 , j x ‾ j + ∑ j = 1 , a 1 , j < 0 N a 1 , j x ‾ j \begin{equation} \displaystyle \sum_{j = 1, a_{1, j} > 0}^{N} a_{1, j} \underline{x}_j + \displaystyle\sum_{j = 1, a_{1, j} < 0}^{N} a_{1, j} \overline{x}_j ≤ \displaystyle \sum_{j = 1}^{N} a_{1, j} x_j = b_1 ≤ \displaystyle \sum_{j = 1, a_{1, j} > 0}^{N} a_{1, j} \overline{x}_j + \displaystyle \sum_{j = 1, a_{1, j} < 0}^{N} a_{1, j} \underline{x}_j \end{equation} j=1,a1,j>0Na1,jxj+j=1,a1,j<0Na1,jxjj=1Na1,jxj=b1j=1,a1,j>0Na1,jxj+j=1,a1,j<0Na1,jxj
此时必要性可证。
    然后求证充分性,由于该问题中的系数矩阵行最简形变换后的常数向量 b R R E F \boldsymbol{b_{RREF}} bRREF自第 ( R + 1 ) \left( R + 1 \right) (R+1)列到第 M M M列不存在非零元素,且线性方程组对应系数矩阵的秩 R = 1 R = 1 R=1,因此根据线性方程组理论可知,该问题在 N N N维实数空间内必然有解,此时需求证 ∑ j = 1 , a 1 , j > 0 N a 1 , j x ‾ j + ∑ j = 1 , a 1 , j < 0 N a 1 , j x ‾ j ≤ b 1 ≤ ∑ j = 1 , a 1 , j > 0 N a 1 , j x ‾ j + ∑ j = 1 , a 1 , j < 0 N a 1 , j x ‾ j \displaystyle \sum_{j = 1, a_{1, j} > 0}^{N} a_{1, j} \underline{x}_j + \displaystyle\sum_{j = 1, a_{1, j} < 0}^{N} a_{1, j} \overline{x}_j ≤ b_1 ≤ \displaystyle \sum_{j = 1, a_{1, j} > 0}^{N} a_{1, j} \overline{x}_j + \displaystyle \sum_{j = 1, a_{1, j} < 0}^{N} a_{1, j} \underline{x}_j j=1,a1,j>0Na1,jxj+j=1,a1,j<0Na1,jxjb1j=1,a1,j>0Na1,jxj+j=1,a1,j<0Na1,jxj时,必能得到解向量 x = [ x 1 ⋯ x j ⋯ x N ] T \boldsymbol{x} = \left[ \begin{matrix} x_1 & \cdots & x_j & \cdots & x_N \end{matrix} \right]^T x=[x1xjxN]T,使得对于 ∀ j ∈ { 1 , ⋯   , N } \forall j ∈ \{ 1, \cdots, N\} j{1,,N},都有 x j ∈ [ x ‾ j , x ‾ j ] x_j ∈ \left[ \underline{x}_j, \overline{x}_j \right] xj[xj,xj]
    以下采用数学归纳法进行进一步证明:
    当 N = 1 N = 1 N=1时,由于 R = 1 R = 1 R=1,因此 a 1 , 1 ≠ 0 a_{1, 1} \neq 0 a1,1=0。若 a 1 , 1 > 0 a_{1, 1} > 0 a1,1>0,则此时 a 1 , 1 x ‾ 1 ≤ a 1 , 1 x 1 = b 1 ≤ a 1 , 1 x ‾ 1 a_{1, 1} \underline{x}_1 ≤ a_{1, 1} x_1 = b_1 ≤ a_{1, 1} \overline{x}_1 a1,1x1a1,1x1=b1a1,1x1;若 a 1 , 1 < 0 a_{1, 1} < 0 a1,1<0,则此时 a 1 , 1 x ‾ 1 ≤ a 1 , 1 x 1 = b 1 ≤ a 1 , 1 x ‾ 1 a_{1, 1} \overline{x}_1 ≤ a_{1, 1} x_1 = b_1 ≤ a_{1, 1} \underline{x}_1 a1,1x1a1,1x1=b1a1,1x1。两种情况均可求得 x ‾ 1 ≤ x 1 = b 1 a 1 , 1 ≤ x ‾ 1 \underline{x}_1 ≤ x_1 = \dfrac{b_1} {a_{1, 1}} ≤ \overline{x}_1 x1x1=a1,1b1x1,故必能在 [ x ‾ 1 , x ‾ 1 ] \left[ \underline{x}_1, \overline{x}_1 \right] [x1,x1]上求得 x 1 = b 1 a 1 , 1 x_1 = \dfrac{b_1} {a_{1, 1}} x1=a1,1b1,使得待求量既满足该问题中的所有约束条件,问题的充分性成立。
    假设当 N = K ( K > 1 ) N = K \left( K > 1 \right) N=K(K>1)时,命题的充分性成立。则当 N = K + 1 N = K + 1 N=K+1时,有
∑ j = 1 , a 1 , j > 0 K + 1 a 1 , j x ‾ j + ∑ j = 1 , a 1 , j < 0 K + 1 a 1 , j x ‾ j ≤ ∑ j = 1 K + 1 a 1 , j x j = b 1 ≤ ∑ j = 1 , a 1 , j > 0 K + 1 a 1 , j x ‾ j + ∑ j = 1 , a 1 , j < 0 K + 1 a 1 , j x ‾ j \begin{equation} \displaystyle \sum_{j = 1, a_{1, j} > 0}^{K + 1} a_{1, j} \underline{x}_j + \displaystyle\sum_{j = 1, a_{1, j} < 0}^{K + 1} a_{1, j} \overline{x}_j ≤ \displaystyle \sum_{j = 1}^{K + 1} a_{1, j} x_j = b_1 ≤ \displaystyle \sum_{j = 1, a_{1, j} > 0}^{K + 1} a_{1, j} \overline{x}_j + \displaystyle \sum_{j = 1, a_{1, j} < 0}^{K + 1} a_{1, j} \underline{x}_j \end{equation} j=1,a1,j>0K+1a1,jxj+j=1,a1,j<0K+1a1,jxjj=1K+1a1,jxj=b1j=1,a1,j>0K+1a1,jxj+j=1,a1,j<0K+1a1,jxj
    将式(3)所示和式方程部分分解为前 K K K项和式与第 ( K + 1 ) \left( K + 1 \right) (K+1)项相加的形式,则式(3)变为
∑ j = 1 K a 1 , j x j + a 1 , K + 1 x K + 1 = b 1 \begin{equation} \displaystyle \sum_{j = 1}^{K} a_{1, j} x_j + a_{1, K + 1} x_{K + 1} = b_1 \end{equation} j=1Ka1,jxj+a1,K+1xK+1=b1
    结合式(4)和题设中的充分性条件可知,若 ∑ j = 1 K a 1 , j x j \displaystyle \sum_{j = 1}^{K} a_{1, j} x_j j=1Ka1,jxj满足
{ b 1 − a 1 , K + 1 x ‾ K + 1 ≤ ∑ j = 1 K a 1 , j x j = b 1 − a 1 , K + 1 x K + 1 ≤ b 1 − a 1 , K + 1 x ‾ K + 1 ( a 1 , K + 1 > 0 ) b 1 − a 1 , K + 1 x ‾ K + 1 ≤ ∑ j = 1 K a 1 , j x j = b 1 − a 1 , K + 1 x K + 1 ≤ b 1 − a 1 , K + 1 x ‾ K + 1 ( a 1 , K + 1 < 0 ) ∑ j = 1 K a 1 , j x j = b 1 ( a 1 , K + 1 = 0 ) \begin{equation} \begin{cases} b_1 - a_{1, K + 1} \overline{x}_{K + 1} ≤ \displaystyle \sum_{j = 1}^{K} a_{1, j} x_j = b_1 - a_{1, K + 1} x_{K + 1} ≤ b_1 - a_{1, K + 1} \underline{x}_{K + 1} & \left( a_{1, K + 1} > 0 \right) \\ b_1 - a_{1, K + 1} \underline{x}_{K + 1} ≤ \displaystyle \sum_{j = 1}^{K} a_{1, j} x_j = b_1 - a_{1, K + 1} x_{K + 1} ≤ b_1 - a_{1, K + 1} \overline{x}_{K + 1} & \left( a_{1, K + 1} < 0 \right) \\ \displaystyle \sum_{j = 1}^{K} a_{1, j} x_j = b_1 & \left( a_{1, K + 1} = 0 \right) \end{cases} \end{equation} b1a1,K+1xK+1j=1Ka1,jxj=b1a1,K+1xK+1b1a1,K+1xK+1b1a1,K+1xK+1j=1Ka1,jxj=b1a1,K+1xK+1b1a1,K+1xK+1j=1Ka1,jxj=b1(a1,K+1>0)(a1,K+1<0)(a1,K+1=0)
则必然有
∑ j = 1 , a 1 , j > 0 K a 1 , j x ‾ j + ∑ j = 1 , a 1 , j < 0 K a 1 , j x ‾ j ≤ ∑ j = 1 K a 1 , j x j = b 1 − a 1 , K + 1 x K + 1 ≤ ∑ j = 1 , a 1 , j > 0 K a 1 , j x ‾ j + ∑ j = 1 , a 1 , j < 0 K a 1 , j x ‾ j \begin{equation} \displaystyle \sum_{j = 1, a_{1, j} > 0}^{K} a_{1, j} \underline{x}_j + \displaystyle\sum_{j = 1, a_{1, j} < 0}^{K} a_{1, j} \overline{x}_j ≤ \displaystyle \sum_{j = 1}^{K} a_{1, j} x_j = b_1 - a_{1, K + 1} x_{K + 1} ≤ \displaystyle \sum_{j = 1, a_{1, j} > 0}^{K} a_{1, j} \overline{x}_j + \displaystyle \sum_{j = 1, a_{1, j} < 0}^{K} a_{1, j} \underline{x}_j \end{equation} j=1,a1,j>0Ka1,jxj+j=1,a1,j<0Ka1,jxjj=1Ka1,jxj=b1a1,K+1xK+1j=1,a1,j>0Ka1,jxj+j=1,a1,j<0Ka1,jxj
    根据前述在 N = K N = K N=K时的假设,必能得到解向量 x 1 − K = [ x 1 ⋯ x j ⋯ x K ] T \boldsymbol{x}_{1 - K} = \left[ \begin{matrix} x_1 & \cdots & x_j & \cdots & x_K \end{matrix} \right]^T x1K=[x1xjxK]T,使得对于 ∀ j ∈ { 1 , ⋯   , K } \forall j ∈ \{ 1, \cdots, K\} j{1,,K},都有 x j ∈ [ x ‾ j , x ‾ j ] x_j ∈ \left[ \underline{x}_j, \overline{x}_j \right] xj[xj,xj]。将其代入式(4),可得
b 1 − ( ∑ j = 1 , a 1 , j > 0 K a 1 , j x ‾ j + ∑ j = 1 , a 1 , j < 0 K a 1 , j x ‾ j ) ≤ a 1 , K + 1 x K + 1 = b 1 − ∑ j = 1 K a 1 , j x j ≤ b 1 − ( ∑ j = 1 , a 1 , j > 0 K a 1 , j x ‾ j + ∑ j = 1 , a 1 , j < 0 K a 1 , j x ‾ j ) \begin{equation} b_1 - \left( \displaystyle \sum_{j = 1, a_{1, j} > 0}^{K} a_{1, j} \overline{x}_j + \displaystyle \sum_{j = 1, a_{1, j} < 0}^{K} a_{1, j} \underline{x}_j \right) ≤ a_{1, K + 1} x_{K + 1} = b_1 - \displaystyle \sum_{j = 1}^{K} a_{1, j} x_j ≤ b_1 - \left( \displaystyle \sum_{j = 1, a_{1, j} > 0}^{K} a_{1, j} \overline{x}_j + \displaystyle \sum_{j = 1, a_{1, j} < 0}^{K} a_{1, j} \underline{x}_j \right) \end{equation} b1 j=1,a1,j>0Ka1,jxj+j=1,a1,j<0Ka1,jxj a1,K+1xK+1=b1j=1Ka1,jxjb1 j=1,a1,j>0Ka1,jxj+j=1,a1,j<0Ka1,jxj

    1) 当 a 1 , K + 1 > 0 a_{1, K + 1} > 0 a1,K+1>0时,式(7)变为
a 1 , K + 1 x ‾ K + 1 ≤ b 1 − ( ∑ j = 1 , a 1 , j > 0 K a 1 , j x ‾ j + ∑ j = 1 , a 1 , j < 0 K a 1 , j x ‾ j ) ≤ a 1 , K + 1 x K + 1 ≤ b 1 − ( ∑ j = 1 , a 1 , j > 0 K a 1 , j x ‾ j + ∑ j = 1 , a 1 , j < 0 K a 1 , j x ‾ j ) ≤ a 1 , K + 1 x ‾ K + 1 \begin{equation} a_{1, K + 1} \underline{x}_{K + 1} ≤ b_1 - \left( \displaystyle \sum_{j = 1, a_{1, j} > 0}^{K} a_{1, j} \overline{x}_j + \displaystyle \sum_{j = 1, a_{1, j} < 0}^{K} a_{1, j} \underline{x}_j \right) ≤ a_{1, K + 1} x_{K + 1} ≤ b_1 - \left( \displaystyle \sum_{j = 1, a_{1, j} > 0}^{K} a_{1, j} \overline{x}_j + \displaystyle \sum_{j = 1, a_{1, j} < 0}^{K} a_{1, j} \underline{x}_j \right) ≤ a_{1, K + 1} \overline{x}_{K + 1} \end{equation} a1,K+1xK+1b1 j=1,a1,j>0Ka1,jxj+j=1,a1,j<0Ka1,jxj a1,K+1xK+1b1 j=1,a1,j>0Ka1,jxj+j=1,a1,j<0Ka1,jxj a1,K+1xK+1
    结合式(6)可知,此时必能得到 x K + 1 = b 1 − ∑ j = 1 K a 1 , j x j a 1 , K + 1 x_{K + 1} = \dfrac{b_1 - \displaystyle \sum_{j = 1}^{K} a_{1, j} x_j} {a_{1, K + 1}} xK+1=a1,K+1b1j=1Ka1,jxj,使得 x ‾ K + 1 ≤ x K + 1 = b 1 − ∑ j = 1 K a 1 , j x j a 1 , K + 1 ≤ x ‾ K + 1 \underline{x}_{K + 1} ≤ x_{K + 1} = \dfrac{b_1 - \displaystyle \sum_{j = 1}^{K} a_{1, j} x_j} {a_{1, K + 1}} ≤ \overline{x}_{K + 1} xK+1xK+1=a1,K+1b1j=1Ka1,jxjxK+1

    2) 当 a 1 , K + 1 < 0 a_{1, K + 1} < 0 a1,K+1<0时,式(7)变为
a 1 , K + 1 x ‾ K + 1 ≤ b 1 − ( ∑ j = 1 , a 1 , j > 0 K a 1 , j x ‾ j + ∑ j = 1 , a 1 , j < 0 K a 1 , j x ‾ j ) ≤ a 1 , K + 1 x K + 1 ≤ b 1 − ( ∑ j = 1 , a 1 , j > 0 K a 1 , j x ‾ j + ∑ j = 1 , a 1 , j < 0 K a 1 , j x ‾ j ) ≤ a 1 , K + 1 x ‾ K + 1 \begin{equation} a_{1, K + 1} \overline{x}_{K + 1} ≤ b_1 - \left( \displaystyle \sum_{j = 1, a_{1, j} > 0}^{K} a_{1, j} \overline{x}_j + \displaystyle \sum_{j = 1, a_{1, j} < 0}^{K} a_{1, j} \underline{x}_j \right) ≤ a_{1, K + 1} x_{K + 1} ≤ b_1 - \left( \displaystyle \sum_{j = 1, a_{1, j} > 0}^{K} a_{1, j} \overline{x}_j + \displaystyle \sum_{j = 1, a_{1, j} < 0}^{K} a_{1, j} \underline{x}_j \right) ≤ a_{1, K + 1} \underline{x}_{K + 1} \end{equation} a1,K+1xK+1b1 j=1,a1,j>0Ka1,jxj+j=1,a1,j<0Ka1,jxj a1,K+1xK+1b1 j=1,a1,j>0Ka1,jxj+j=1,a1,j<0Ka1,jxj a1,K+1xK+1
    结合式(6)可知,此时必能得到 x K + 1 = b 1 − ∑ j = 1 K a 1 , j x j a 1 , K + 1 x_{K + 1} = \dfrac{b_1 - \displaystyle \sum_{j = 1}^{K} a_{1, j} x_j} {a_{1, K + 1}} xK+1=a1,K+1b1j=1Ka1,jxj,使得 x ‾ K + 1 ≤ x K + 1 = b 1 − ∑ j = 1 K a 1 , j x j a 1 , K + 1 ≤ x ‾ K + 1 \underline{x}_{K + 1} ≤ x_{K + 1} = \dfrac{b_1 - \displaystyle \sum_{j = 1}^{K} a_{1, j} x_j} {a_{1, K + 1}} ≤ \overline{x}_{K + 1} xK+1xK+1=a1,K+1b1j=1Ka1,jxjxK+1

    3) 当 a 1 , K + 1 = 0 a_{1, K + 1} = 0 a1,K+1=0时,结合式(6)可得,式(7)变为 0 = 0 0 = 0 0=0的恒等式,此时可在区间 [ x ‾ K + 1 , x ‾ K + 1 ] \left[ \underline{x}_{K + 1}, \overline{x}_{K + 1}\right] [xK+1,xK+1]上任意取值均可作为 x K + 1 x_{K + 1} xK+1的解。

    因此可证,当 N = K + 1 N = K + 1 N=K+1时,必能得到解向量 x = [ x 1 ⋯ x j ⋯ x K + 1 ] T \boldsymbol{x} = \left[ \begin{matrix} x_1 & \cdots & x_j & \cdots & x_{K + 1} \end{matrix} \right]^T x=[x1xjxK+1]T,使得对于 ∀ j ∈ { 1 , ⋯   , K + 1 } \forall j ∈ \{ 1, \cdots, K + 1\} j{1,,K+1},都有 x j ∈ [ x ‾ j , x ‾ j ] x_j ∈ \left[ \underline{x}_j, \overline{x}_j \right] xj[xj,xj],命题的充分性成立。综合对 R = 1 R = 1 R=1时的讨论和对 R = K R = K R=K时的假设可知,命题的充分性对于 ∀ R \forall R R恒成立,命题的充分性得证。
    综上所述,命题的必要性充分性均成立,命题得证,该命题可作为对修正方法进行可行性分析时的预备定理——单线性方程约束问题可行性定理

修正结果与单线性方程约束问题可行性定理之间的联系

    当生成的随机向量 x g e n \boldsymbol{x_{gen}} xgen不满足单线性方程约束时,可通过对 ∑ j = 1 N a 1 , j x g e n , j > b 1 \displaystyle \sum_{j = 1}^{N} a_{1, j} x_{gen, j} > b_1 j=1Na1,jxgen,j>b1 ∑ j = 1 N a 1 , j x g e n , j < b 1 \displaystyle \sum_{j = 1}^{N} a_{1, j} x_{gen, j} < b_1 j=1Na1,jxgen,j<b1的情况分类讨论,并根据博客《一种线性方程约束下生成随机数修正的一般性方法(上)》所提方法修正为 x c o r \boldsymbol{x_{cor}} xcor。通过下述讨论可知,单线性约束问题的可行性可通过修正后 x c o r \boldsymbol{x_{cor}} xcor是否在变量上下界约束范围内的特征直接体现:当单线性约束问题可行时,修正结果 x c o r \boldsymbol{x_{cor}} xcor必然在变量上下界约束范围内;当单线性约束问题不可行时,修正结果 x c o r \boldsymbol{x_{cor}} xcor必然超出变量上下界约束范围。

    情况1: 当 ∑ j = 1 N a 1 , j x g e n , j > b 1 \displaystyle \sum_{j = 1}^{N} a_{1, j} x_{gen, j} > b_1 j=1Na1,jxgen,j>b1时,
∑ j = 1 , a 1 , j > 0 N a 1 , j ( x g e n , j − x ‾ j ) + ∑ j = 1 , a 1 , j < 0 N a 1 , j ( x g e n , j − x ‾ j ) > 0 \displaystyle \sum_{j = 1,a_{1, j} > 0}^{N} a_{1, j} \left( x_{gen, j} - \underline{x}_j \right) + \displaystyle \sum_{j = 1, a_{1, j} < 0}^{N} a_{1, j} \left( x_{gen, j} - \overline{x}_j \right) > 0 j=1,a1,j>0Na1,j(xgen,jxj)+j=1,a1,j<0Na1,j(xgen,jxj)>0,其修正解在实数空间上的分布可分如下情况进行讨论:

    情况1.1:当单线性方程约束问题有解时,根据单线性方程约束问题可行性定理可知 ∑ j = 1 , a 1 , j > 0 N a 1 , j x ‾ j + ∑ j = 1 , a 1 , j < 0 N a 1 , j x ‾ j ≤ b 1 ≤ ∑ j = 1 , a 1 , j > 0 N a 1 , j x ‾ j + ∑ j = 1 , a 1 , j < 0 N a 1 , j x ‾ j \displaystyle \sum_{j = 1, a_{1, j} > 0}^{N} a_{1, j} \underline{x}_j + \displaystyle\sum_{j = 1, a_{1, j} < 0}^{N} a_{1, j} \overline{x}_j ≤ b_1 ≤ \displaystyle \sum_{j = 1, a_{1, j} > 0}^{N} a_{1, j} \overline{x}_j + \displaystyle \sum_{j = 1, a_{1, j} < 0}^{N} a_{1, j} \underline{x}_j j=1,a1,j>0Na1,jxj+j=1,a1,j<0Na1,jxjb1j=1,a1,j>0Na1,jxj+j=1,a1,j<0Na1,jxj,将其代入修正结果,可得
x c o r , j = { b 1 − ( ∑ j = 1 , a 1 , j > 0 N a 1 , j x ‾ j + ∑ j = 1 , a 1 , j < 0 N a 1 , j x ‾ j ) ∑ j = 1 , a 1 , j > 0 N a 1 , j ( x g e n , j − x ‾ j ) + ∑ j = 1 , a 1 , j < 0 N a 1 , j ( x g e n , j − x ‾ j ) ( x g e n , j − x ‾ j ) + x ‾ j ∈ [ x ‾ j , x ‾ j ] ( a 1 , j > 0 ) x g e n , j ∈ [ x ‾ j , x ‾ j ] ( a 1 , j = 0 ) b 1 − ( ∑ j = 1 , a 1 , j > 0 N a 1 , j x ‾ j + ∑ j = 1 , a 1 , j < 0 N a 1 , j x ‾ j ) ∑ j = 1 , a 1 , j > 0 N a 1 , j ( x g e n , j − x ‾ j ) + ∑ j = 1 , a 1 , j < 0 N a 1 , j ( x g e n , j − x ‾ j ) ( x g e n , j − x ‾ j ) + x ‾ j ∈ [ x ‾ j , x ‾ j ] ( a 1 , j < 0 ) \begin{equation} x_{cor, j} = \begin{cases} \dfrac{b_1 - \left( \displaystyle \sum_{j = 1, a_{1, j} > 0}^{N} a_{1, j} \underline{x}_j + \displaystyle \sum_{j = 1, a_{1, j} < 0}^{N} a_{1, j} \overline{x}_j \right)} {\displaystyle \sum_{j = 1,a_{1, j} > 0}^{N} a_{1, j} \left( x_{gen, j} - \underline{x}_j \right) + \displaystyle \sum_{j = 1, a_{1, j} < 0}^{N} a_{1, j} \left( x_{gen, j} - \overline{x}_j \right)} \left( x_{gen, j} - \underline{x}_j \right) + \underline{x}_j ∈ \left[ \underline{x}_j, \overline{x}_j \right] & \left( a_{1, j} > 0 \right) \\ x_{gen, j} ∈ \left[ \underline{x}_j, \overline{x}_j \right] & \left( a_{1, j} = 0 \right) \\ \dfrac{b_1 - \left( \displaystyle \sum_{j = 1, a_{1, j} > 0}^{N} a_{1, j} \underline{x}_j + \displaystyle \sum_{j = 1, a_{1, j} < 0}^{N} a_{1, j} \overline{x}_j\right)} {\displaystyle \sum_{j = 1,a_{1, j} > 0}^{N} a_{1, j} \left( x_{gen, j} - \underline{x}_j \right) + \displaystyle \sum_{j = 1, a_{1, j} < 0}^{N} a_{1, j} \left( x_{gen, j} - \overline{x}_j \right)} \left( x_{gen, j} - \overline{x}_j \right) + \overline{x}_j ∈ \left[ \underline{x}_j, \overline{x}_j \right] & \left( a_{1, j} < 0 \right) \\ \end{cases} \end{equation} xcor,j= j=1,a1,j>0Na1,j(xgen,jxj)+j=1,a1,j<0Na1,j(xgen,jxj)b1 j=1,a1,j>0Na1,jxj+j=1,a1,j<0Na1,jxj (xgen,jxj)+xj[xj,xj]xgen,j[xj,xj]j=1,a1,j>0Na1,j(xgen,jxj)+j=1,a1,j<0Na1,j(xgen,jxj)b1 j=1,a1,j>0Na1,jxj+j=1,a1,j<0Na1,jxj (xgen,jxj)+xj[xj,xj](a1,j>0)(a1,j=0)(a1,j<0)

    情况1.2:当单线性方程约束问题无解时,根据单线性方程约束问题可行性定理可知 b 1 < ∑ j = 1 , a 1 , j > 0 N a 1 , j x ‾ j + ∑ j = 1 , a 1 , j < 0 N a 1 , j x ‾ j b_1 < \displaystyle \sum_{j = 1, a_{1, j} > 0}^{N} a_{1, j} \underline{x}_j + \displaystyle\sum_{j = 1, a_{1, j} < 0}^{N} a_{1, j} \overline{x}_j b1<j=1,a1,j>0Na1,jxj+j=1,a1,j<0Na1,jxj b 1 > ∑ j = 1 , a 1 , j > 0 N a 1 , j x ‾ j + ∑ j = 1 , a 1 , j < 0 N a 1 , j x ‾ j b_1 > \displaystyle \sum_{j = 1, a_{1, j} > 0}^{N} a_{1, j} \overline{x}_j + \displaystyle \sum_{j = 1, a_{1, j} < 0}^{N} a_{1, j} \underline{x}_j b1>j=1,a1,j>0Na1,jxj+j=1,a1,j<0Na1,jxj,将其代入修正结果,可得

    情况1.2.1:当 b 1 < ∑ j = 1 , a 1 , j > 0 N a 1 , j x ‾ j + ∑ j = 1 , a 1 , j < 0 N a 1 , j x ‾ j b_1 < \displaystyle \sum_{j = 1, a_{1, j} > 0}^{N} a_{1, j} \underline{x}_j + \displaystyle\sum_{j = 1, a_{1, j} < 0}^{N} a_{1, j} \overline{x}_j b1<j=1,a1,j>0Na1,jxj+j=1,a1,j<0Na1,jxj
x c o r , j = { b 1 − ( ∑ j = 1 , a 1 , j > 0 N a 1 , j x ‾ j + ∑ j = 1 , a 1 , j < 0 N a 1 , j x ‾ j ) ∑ j = 1 , a 1 , j > 0 N a 1 , j ( x g e n , j − x ‾ j ) + ∑ j = 1 , a 1 , j < 0 N a 1 , j ( x g e n , j − x ‾ j ) ( x g e n , j − x ‾ j ) + x ‾ j < x ‾ j ( a 1 , j > 0 ) x g e n , j ∈ [ x ‾ j , x ‾ j ] ( a 1 , j = 0 ) b 1 − ( ∑ j = 1 , a 1 , j > 0 N a 1 , j x ‾ j + ∑ j = 1 , a 1 , j < 0 N a 1 , j x ‾ j ) ∑ j = 1 , a 1 , j > 0 N a 1 , j ( x g e n , j − x ‾ j ) + ∑ j = 1 , a 1 , j < 0 N a 1 , j ( x g e n , j − x ‾ j ) ( x g e n , j − x ‾ j ) + x ‾ j > x ‾ j ( a 1 , j < 0 ) \begin{equation} x_{cor, j} = \begin{cases} \dfrac{b_1 - \left( \displaystyle \sum_{j = 1, a_{1, j} > 0}^{N} a_{1, j} \underline{x}_j + \displaystyle \sum_{j = 1, a_{1, j} < 0}^{N} a_{1, j} \overline{x}_j \right)} {\displaystyle \sum_{j = 1,a_{1, j} > 0}^{N} a_{1, j} \left( x_{gen, j} - \underline{x}_j \right) + \displaystyle \sum_{j = 1, a_{1, j} < 0}^{N} a_{1, j} \left( x_{gen, j} - \overline{x}_j \right)} \left( x_{gen, j} - \underline{x}_j \right) + \underline{x}_j < \underline{x}_j & \left( a_{1, j} > 0 \right) \\ x_{gen, j} ∈ \left[ \underline{x}_j, \overline{x}_j \right] & \left( a_{1, j} = 0 \right) \\ \dfrac{b_1 - \left( \displaystyle \sum_{j = 1, a_{1, j} > 0}^{N} a_{1, j} \underline{x}_j + \displaystyle \sum_{j = 1, a_{1, j} < 0}^{N} a_{1, j} \overline{x}_j\right)} {\displaystyle \sum_{j = 1,a_{1, j} > 0}^{N} a_{1, j} \left( x_{gen, j} - \underline{x}_j \right) + \displaystyle \sum_{j = 1, a_{1, j} < 0}^{N} a_{1, j} \left( x_{gen, j} - \overline{x}_j \right)} \left( x_{gen, j} - \overline{x}_j \right) + \overline{x}_j > \overline{x}_j & \left( a_{1, j} < 0 \right) \\ \end{cases} \end{equation} xcor,j= j=1,a1,j>0Na1,j(xgen,jxj)+j=1,a1,j<0Na1,j(xgen,jxj)b1 j=1,a1,j>0Na1,jxj+j=1,a1,j<0Na1,jxj (xgen,jxj)+xj<xjxgen,j[xj,xj]j=1,a1,j>0Na1,j(xgen,jxj)+j=1,a1,j<0Na1,j(xgen,jxj)b1 j=1,a1,j>0Na1,jxj+j=1,a1,j<0Na1,jxj (xgen,jxj)+xj>xj(a1,j>0)(a1,j=0)(a1,j<0)

    情况1.2.2:当 b 1 > ∑ j = 1 , a 1 , j > 0 N a 1 , j x ‾ j + ∑ j = 1 , a 1 , j < 0 N a 1 , j x ‾ j b_1 > \displaystyle \sum_{j = 1, a_{1, j} > 0}^{N} a_{1, j} \overline{x}_j + \displaystyle\sum_{j = 1, a_{1, j} < 0}^{N} a_{1, j} \underline{x}_j b1>j=1,a1,j>0Na1,jxj+j=1,a1,j<0Na1,jxj
x c o r , j = { b 1 − ( ∑ j = 1 , a 1 , j > 0 N a 1 , j x ‾ j + ∑ j = 1 , a 1 , j < 0 N a 1 , j x ‾ j ) ∑ j = 1 , a 1 , j > 0 N a 1 , j ( x g e n , j − x ‾ j ) + ∑ j = 1 , a 1 , j < 0 N a 1 , j ( x g e n , j − x ‾ j ) ( x g e n , j − x ‾ j ) + x ‾ j > x ‾ j ( a 1 , j > 0 ) x g e n , j ∈ [ x ‾ j , x ‾ j ] ( a 1 , j = 0 ) b 1 − ( ∑ j = 1 , a 1 , j > 0 N a 1 , j x ‾ j + ∑ j = 1 , a 1 , j < 0 N a 1 , j x ‾ j ) ∑ j = 1 , a 1 , j > 0 N a 1 , j ( x g e n , j − x ‾ j ) + ∑ j = 1 , a 1 , j < 0 N a 1 , j ( x g e n , j − x ‾ j ) ( x g e n , j − x ‾ j ) + x ‾ j < x ‾ j ( a 1 , j < 0 ) \begin{equation} x_{cor, j} = \begin{cases} \dfrac{b_1 - \left( \displaystyle \sum_{j = 1, a_{1, j} > 0}^{N} a_{1, j} \underline{x}_j + \displaystyle \sum_{j = 1, a_{1, j} < 0}^{N} a_{1, j} \overline{x}_j \right)} {\displaystyle \sum_{j = 1,a_{1, j} > 0}^{N} a_{1, j} \left( x_{gen, j} - \underline{x}_j \right) + \displaystyle \sum_{j = 1, a_{1, j} < 0}^{N} a_{1, j} \left( x_{gen, j} - \overline{x}_j \right)} \left( x_{gen, j} - \underline{x}_j \right) + \underline{x}_j > \overline{x}_j & \left( a_{1, j} > 0 \right) \\ x_{gen, j} ∈ \left[ \underline{x}_j, \overline{x}_j \right] & \left( a_{1, j} = 0 \right) \\ \dfrac{b_1 - \left( \displaystyle \sum_{j = 1, a_{1, j} > 0}^{N} a_{1, j} \underline{x}_j + \displaystyle \sum_{j = 1, a_{1, j} < 0}^{N} a_{1, j} \overline{x}_j\right)} {\displaystyle \sum_{j = 1,a_{1, j} > 0}^{N} a_{1, j} \left( x_{gen, j} - \underline{x}_j \right) + \displaystyle \sum_{j = 1, a_{1, j} < 0}^{N} a_{1, j} \left( x_{gen, j} - \overline{x}_j \right)} \left( x_{gen, j} - \overline{x}_j \right) + \overline{x}_j < \underline{x}_j & \left( a_{1, j} < 0 \right) \\ \end{cases} \end{equation} xcor,j= j=1,a1,j>0Na1,j(xgen,jxj)+j=1,a1,j<0Na1,j(xgen,jxj)b1 j=1,a1,j>0Na1,jxj+j=1,a1,j<0Na1,jxj (xgen,jxj)+xj>xjxgen,j[xj,xj]j=1,a1,j>0Na1,j(xgen,jxj)+j=1,a1,j<0Na1,j(xgen,jxj)b1 j=1,a1,j>0Na1,jxj+j=1,a1,j<0Na1,jxj (xgen,jxj)+xj<xj(a1,j>0)(a1,j=0)(a1,j<0)

    剩余内容参见博客 《线性方程约束下修正方法的可行性分析(演绎推理,二)》

  • 8
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Academia1998

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值