一种线性方程约束下生成随机数修正的一般性方法(下)

16 篇文章 0 订阅
15 篇文章 0 订阅

    本文内容接续博客 《一种线性方程约束下生成随机数修正的一般性方法(中)》

修正方法

    情况2.2.2.2.2.2.1:当 ∑ j = 1 , a ~ k , j > 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) j=1,a~k,j>0NRa~k,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~k,j(xgen,R+jxR+j) ∑ j = 1 , a ~ i , j > 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ i , j < 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) {\displaystyle \sum_{j = 1, \tilde{a}_{i, j} > 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{i, j} < 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right)} j=1,a~i,j>0NRa~i,j(xgen,R+jxR+j)+j=1,a~i,j<0NRa~i,j(xgen,R+jxR+j)同号时, b ~ ‾ c o r , k ′ ( i ) \underline{\tilde{b}}'_{cor, k} \left( i \right) b~cor,k(i) b ~ ‾ c o r , k ′ ( i ) \overline{\tilde{b}}'_{cor, k} \left( i \right) b~cor,k(i) b ~ ‾ c o r , k ′ ′ ( i ) \underline{\tilde{b}}''_{cor, k} \left( i \right) b~cor,k′′(i) b ~ ‾ c o r , k ′ ′ ( i ) \overline{\tilde{b}}''_{cor, k} \left( i \right) b~cor,k′′(i)分别满足
b ~ ‾ c o r , k ′ ( i ) = ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j ) + ∑ j = 1 , a ~ k , j > 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) × [ ( ∑ j = 1 , a ~ i , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ i , j < 0 N − R a ~ i , j x ‾ R + j ) − ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j = 0 N − R a ~ i , j x g e n , R + j ) ] b ~ ‾ c o r , k ′ ( i ) = ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j ) + ∑ j = 1 , a ~ k , j > 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) × [ ( ∑ j = 1 , a ~ i , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ i , j < 0 N − R a ~ i , j x ‾ R + j ) − ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j = 0 N − R a ~ i , j x g e n , R + j ) ] b ~ ‾ c o r , k ′ ′ ( i ) = ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j ) + ∑ j = 1 , a ~ k , j > 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) ∑ j = 1 , a ~ i , j > 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ i , j < 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) × [ ( b R R E F , i − x ‾ i ) − ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j = 0 N − R a ~ i , j x g e n , R + j ) ] b ~ ‾ c o r , k ′ ′ ( i ) = ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j ) + ∑ j = 1 , a ~ k , j > 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) ∑ j = 1 , a ~ i , j > 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ i , j < 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) × [ ( b R R E F , i − x ‾ i ) − ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j = 0 N − R a ~ i , j x g e n , R + j ) ] \begin{equation} \begin{split}\tag{28} \underline{\tilde{b}}'_{cor, k} \left( i \right) &= \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} \right) + \dfrac{ \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right)} {\displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right)} \times \left[ \left( \displaystyle \sum_{j = 1, \tilde{a}_{i, j} > 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{i, j} < 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} \right) - \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} = 0}^{N - R} \tilde{a}_{i, j} x_{gen, R + j} \right) \right] \\ \overline{\tilde{b}}'_{cor, k} \left( i \right) &= \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} \right) + \dfrac{ \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right)} {\displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right)} \times \left[ \left( \displaystyle \sum_{j = 1, \tilde{a}_{i, j} > 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{i, j} < 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} \right) - \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} = 0}^{N - R} \tilde{a}_{i, j} x_{gen, R + j} \right) \right] \\ \underline{\tilde{b}}''_{cor, k} \left( i \right) &= \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} \right) + \dfrac{ \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right)} {\displaystyle \sum_{j = 1, \tilde{a}_{i, j} > 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{i, j} < 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right)} \times \left[ \left( b_{RREF, i} - \overline{x}_i \right) - \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} = 0}^{N - R} \tilde{a}_{i, j} x_{gen, R + j} \right) \right] \\ \overline{\tilde{b}}''_{cor, k} \left( i \right) &= \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} \right) + \dfrac{ \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right)} {\displaystyle \sum_{j = 1, \tilde{a}_{i, j} > 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{i, j} < 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right)} \times \left[ \left( b_{RREF, i} - \underline{x}_i \right) - \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} = 0}^{N - R} \tilde{a}_{i, j} x_{gen, R + j} \right) \right] \\ \end{split} \end{equation} b~cor,k(i)b~cor,k(i)b~cor,k′′(i)b~cor,k′′(i)= j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j +j=1,a~k,j>0NRa~i,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~i,j(xgen,R+jxR+j)j=1,a~k,j>0NRa~k,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~k,j(xgen,R+jxR+j)× j=1,a~i,j>0NRa~i,jxR+j+j=1,a~i,j<0NRa~i,jxR+j j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j+j=1,a~k,j=0NRa~i,jxgen,R+j = j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j +j=1,a~k,j>0NRa~i,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~i,j(xgen,R+jxR+j)j=1,a~k,j>0NRa~k,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~k,j(xgen,R+jxR+j)× j=1,a~i,j>0NRa~i,jxR+j+j=1,a~i,j<0NRa~i,jxR+j j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j+j=1,a~k,j=0NRa~i,jxgen,R+j = j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j +j=1,a~i,j>0NRa~i,j(xgen,R+jxR+j)+j=1,a~i,j<0NRa~i,j(xgen,R+jxR+j)j=1,a~k,j>0NRa~k,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~k,j(xgen,R+jxR+j)× (bRREF,ixi) j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j+j=1,a~k,j=0NRa~i,jxgen,R+j = j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j +j=1,a~i,j>0NRa~i,j(xgen,R+jxR+j)+j=1,a~i,j<0NRa~i,j(xgen,R+jxR+j)j=1,a~k,j>0NRa~k,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~k,j(xgen,R+jxR+j)× (bRREF,ixi) j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j+j=1,a~k,j=0NRa~i,jxgen,R+j (28)

    情况2.2.2.2.2.2.2:当 ∑ j = 1 , a ~ k , j > 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) j=1,a~k,j>0NRa~k,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~k,j(xgen,R+jxR+j) ∑ j = 1 , a ~ i , j > 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ i , j < 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) {\displaystyle \sum_{j = 1, \tilde{a}_{i, j} > 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{i, j} < 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right)} j=1,a~i,j>0NRa~i,j(xgen,R+jxR+j)+j=1,a~i,j<0NRa~i,j(xgen,R+jxR+j)异号时, b ~ ‾ c o r , k ′ ( i ) \underline{\tilde{b}}'_{cor, k} \left( i \right) b~cor,k(i) b ~ ‾ c o r , k ′ ( i ) \overline{\tilde{b}}'_{cor, k} \left( i \right) b~cor,k(i) b ~ ‾ c o r , k ′ ′ ( i ) \underline{\tilde{b}}''_{cor, k} \left( i \right) b~cor,k′′(i) b ~ ‾ c o r , k ′ ′ ( i ) \overline{\tilde{b}}''_{cor, k} \left( i \right) b~cor,k′′(i)分别满足
b ~ ‾ c o r , k ′ ( i ) = ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j ) + ∑ j = 1 , a ~ k , j > 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) × [ ( ∑ j = 1 , a ~ i , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ i , j < 0 N − R a ~ i , j x ‾ R + j ) − ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j = 0 N − R a ~ i , j x g e n , R + j ) ] b ~ ‾ c o r , k ′ ( i ) = ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j ) + ∑ j = 1 , a ~ k , j > 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) × [ ( ∑ j = 1 , a ~ i , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ i , j < 0 N − R a ~ i , j x ‾ R + j ) − ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j = 0 N − R a ~ i , j x g e n , R + j ) ] b ~ ‾ c o r , k ′ ′ ( i ) = ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j ) + ∑ j = 1 , a ~ k , j > 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) ∑ j = 1 , a ~ i , j > 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ i , j < 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) × [ ( b R R E F , i − x ‾ i ) − ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j = 0 N − R a ~ i , j x g e n , R + j ) ] b ~ ‾ c o r , k ′ ′ ( i ) = ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j ) + ∑ j = 1 , a ~ k , j > 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) ∑ j = 1 , a ~ i , j > 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ i , j < 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) × [ ( b R R E F , i − x ‾ i ) − ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j = 0 N − R a ~ i , j x g e n , R + j ) ] \begin{equation} \begin{split}\tag{29} \underline{\tilde{b}}'_{cor, k} \left( i \right) &= \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} \right) + \dfrac{ \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right)} {\displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right)} \times \left[ \left( \displaystyle \sum_{j = 1, \tilde{a}_{i, j} > 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{i, j} < 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} \right) - \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} = 0}^{N - R} \tilde{a}_{i, j} x_{gen, R + j} \right) \right] \\ \overline{\tilde{b}}'_{cor, k} \left( i \right) &= \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} \right) + \dfrac{ \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right)} {\displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right)} \times \left[ \left( \displaystyle \sum_{j = 1, \tilde{a}_{i, j} > 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{i, j} < 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} \right) - \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} = 0}^{N - R} \tilde{a}_{i, j} x_{gen, R + j} \right) \right] \\ \underline{\tilde{b}}''_{cor, k} \left( i \right) &= \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} \right) + \dfrac{ \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right)} {\displaystyle \sum_{j = 1, \tilde{a}_{i, j} > 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{i, j} < 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right)} \times \left[ \left( b_{RREF, i} - \underline{x}_i \right) - \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} = 0}^{N - R} \tilde{a}_{i, j} x_{gen, R + j} \right) \right] \\ \overline{\tilde{b}}''_{cor, k} \left( i \right) &= \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} \right) + \dfrac{ \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right)} {\displaystyle \sum_{j = 1, \tilde{a}_{i, j} > 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{i, j} < 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right)} \times \left[ \left( b_{RREF, i} - \overline{x}_i \right) - \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} = 0}^{N - R} \tilde{a}_{i, j} x_{gen, R + j} \right) \right] \\ \end{split} \end{equation} b~cor,k(i)b~cor,k(i)b~cor,k′′(i)b~cor,k′′(i)= j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j +j=1,a~k,j>0NRa~i,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~i,j(xgen,R+jxR+j)j=1,a~k,j>0NRa~k,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~k,j(xgen,R+jxR+j)× j=1,a~i,j>0NRa~i,jxR+j+j=1,a~i,j<0NRa~i,jxR+j j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j+j=1,a~k,j=0NRa~i,jxgen,R+j = j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j +j=1,a~k,j>0NRa~i,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~i,j(xgen,R+jxR+j)j=1,a~k,j>0NRa~k,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~k,j(xgen,R+jxR+j)× j=1,a~i,j>0NRa~i,jxR+j+j=1,a~i,j<0NRa~i,jxR+j j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j+j=1,a~k,j=0NRa~i,jxgen,R+j = j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j +j=1,a~i,j>0NRa~i,j(xgen,R+jxR+j)+j=1,a~i,j<0NRa~i,j(xgen,R+jxR+j)j=1,a~k,j>0NRa~k,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~k,j(xgen,R+jxR+j)× (bRREF,ixi) j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j+j=1,a~k,j=0NRa~i,jxgen,R+j = j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j +j=1,a~i,j>0NRa~i,j(xgen,R+jxR+j)+j=1,a~i,j<0NRa~i,j(xgen,R+jxR+j)j=1,a~k,j>0NRa~k,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~k,j(xgen,R+jxR+j)× (bRREF,ixi) j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j+j=1,a~k,j=0NRa~i,jxgen,R+j (29)

    将 x c o r , R + 1 , ⋯   , x c o r , N x_{cor, R + 1}, \cdots, x_{cor, N} xcor,R+1,,xcor,N代入式(13),则修正后的 x c o r , 1 , ⋯   , x c o r , R x_{cor, 1}, \cdots, x_{cor, R} xcor,1,,xcor,R满足
x c o r , i = b R R E F , i − ∑ j = 1 N − R a ~ i , j x c o r , R + j , i ∈ { 1 , ⋯   , R } \begin{equation}\tag{30} x_{cor, i} = b_{RREF, i} - \displaystyle \sum_{j = 1}^{N - R} \tilde{a}_{i, j} x_{cor,R + j}, i ∈ \{ 1, \cdots, R \} \end{equation} xcor,i=bRREF,ij=1NRa~i,jxcor,R+j,i{1,,R}(30)
    显然,若 b ~ c o r , k \tilde{b}_{cor, k} b~cor,k不满足式(25)所示的约束条件,则必存在 i ∈ { 1 , ⋯   , R } i ∈ \{ 1, \cdots, R \} i{1,,R},使得 x c o r , i x_{cor, i} xcor,i不能满足式(1)中的上下界约束,进而无法将 x g e n \boldsymbol{x_{gen}} xgen修正为满足式(1)中所有约束条件的 x c o r \boldsymbol{x_{cor}} xcor

MATLAB代码

linear_equations_constraints_correction函数

function [x_cor, correction_info] = linear_equations_constraints_correction(x_gen, lb, ub, A_eq, b_eq, ...
                                    max_runtime)
    % LINEAR_EQUATIONS_CONSTRAINTS_CORRECTION  Correction onto generated random vector.
    %                                          A methodology of correction onto generated random vector,
    %                                          facilitating the corrected vector to range within variable
    %                                          boundaries and to meet linear constraints

    if ~exist('max_runtime', 'var')
        max_runtime = ceil(1000 / size(x_gen, 2));
    end
    
    Ab_eq = [A_eq, b_eq];
    
    M = size(A_eq, 1);
    [N_D, N_P] = size(x_gen);

    % Invoke Python for an accurate computation of the reduced row echelon form of Ab_eq
    Ab_eq_py = py.numpy.array(Ab_eq);
    Ab_eq_RREF_sym = py.sympy.Matrix(Ab_eq_py).rref();
    Ab_eq_RREF_raw = double(py.numpy.asarray(Ab_eq_RREF_sym(1), dtype = 'float'));
    if size(Ab_eq, 1) == 1
        Ab_eq_RREF = Ab_eq_RREF_raw;
    else
        Ab_eq_RREF = reshape(Ab_eq_RREF_raw, size(Ab_eq_RREF_raw, 2), size(Ab_eq_RREF_raw, 3));
    end

    R_A = sum(any(Ab_eq_RREF(:, 1:end - 1), 2), 1);
    R_Ab = sum(any(Ab_eq_RREF, 2), 1);
    
    if R_A < R_Ab
        x_cor = [];
        correction_info.is_feasible = false(1, N_P);
        correction_info.does_x_cor_exceed.by_bit = true(N_D, N_P);
        correction_info.does_x_cor_exceed.globally = true(1, N_P);
        correction_info.is_equation_equal_to_b.by_bit = false(M, N_P);
        correction_info.is_equation_equal_to_b.globally = false;
    
    else
        if R_A == N_D
            x_cor = Ab_eq_RREF(1:N_D, end);
    
        else
            x_cor = x_gen;

            if R_A == 1
                A_eq_candi = A_eq(1, :);
                Eq_gen = A_eq_candi * x_gen;

                b_eq_candi_lb = A_eq_candi * ((A_eq_candi > 0)' .* lb + (A_eq_candi < 0)' .* ub);
                b_eq_candi_ub = A_eq_candi * ((A_eq_candi > 0)' .* ub + (A_eq_candi < 0)' .* lb);
                delta_plus = A_eq_candi * ((A_eq_candi > 0)' .* (x_gen - lb) + (A_eq_candi < 0)' .* (x_gen - ub));
                delta_minus = A_eq_candi * ((A_eq_candi > 0)' .* (x_gen - ub) + (A_eq_candi < 0)' .* (x_gen - lb));

                for indi = 1:N_P
                    if Eq_gen(:, indi) > b_eq
                        x_cor(A_eq_candi > 0, indi) = (((b_eq - b_eq_candi_lb) / delta_plus(indi)) * (x_gen(A_eq_candi > 0, indi) - lb(A_eq_candi > 0)) ...
                                                      + lb(A_eq_candi > 0))';
                        x_cor(A_eq_candi == 0, indi) = (x_gen(A_eq_candi == 0, indi))';
                        x_cor(A_eq_candi < 0, indi) = (((b_eq - b_eq_candi_lb) / delta_plus(indi)) * (x_gen(A_eq_candi < 0, indi) - ub(A_eq_candi < 0)) ...
                                                      + ub(A_eq_candi < 0))';
                    elseif Eq_gen(:, indi) < b_eq
                        x_cor(A_eq_candi > 0, indi) = (((b_eq - b_eq_candi_ub) / delta_minus(indi)) * (x_gen(A_eq_candi > 0, indi) - ub(A_eq_candi > 0)) ...
                                                      + ub(A_eq_candi > 0))';
                        x_cor(A_eq_candi == 0, indi) = (x_gen(A_eq_candi == 0, indi))';
                        x_cor(A_eq_candi < 0, indi) = (((b_eq - b_eq_candi_ub) / delta_minus(indi)) * (x_gen(A_eq_candi < 0, indi) - lb(A_eq_candi < 0)) ...
                                                      + lb(A_eq_candi < 0))';
                    end
                end

            else
                lb_base = lb(R_A + 1:end, :);
                ub_base = ub(R_A + 1:end, :);
                A_eq_tilde = Ab_eq_RREF(1:R_A, R_A + 1:end - 1);
                b_eq_tilde_lb = diag(A_eq_tilde * ((A_eq_tilde > 0)' .* lb_base + (A_eq_tilde < 0)' .* ub_base));
                b_eq_tilde_ub = diag(A_eq_tilde * ((A_eq_tilde > 0)' .* ub_base + (A_eq_tilde < 0)' .* lb_base));
                b_eq_tilde_min = Ab_eq_RREF(:, end) - ub(1:R_A, end);
                b_eq_tilde_max = Ab_eq_RREF(:, end) - lb(1:R_A, end);
                
                if any(b_eq_tilde_max < b_eq_tilde_lb) || any(b_eq_tilde_min > b_eq_tilde_ub)
                    x_cor = [];
                    correction_info.is_feasible = false(1, N_P);
                    correction_info.does_x_cor_exceed.by_bit = true(N_D, N_P);
                    correction_info.does_x_cor_exceed.globally = true(1, N_P);
                    correction_info.is_equation_equal_to_b.by_bit = false(M, N_P);
                    correction_info.is_equation_equal_to_b.globally = false;
                else
                    run = 0;
                    while 1
                        x_cor = x_gen;
                        x_gen_base = x_gen(R_A + 1:end, :);
                        Eq_tilde_gen = A_eq_tilde * x_gen_base;
                        does_A_eq_tilde_x_gen_base_exceed = (Eq_tilde_gen < b_eq_tilde_min) ...
                                                            | (Eq_tilde_gen > b_eq_tilde_max);

                        for indi = 1:N_P
                            if any(does_A_eq_tilde_x_gen_base_exceed(:, indi))
                                flag_A_eq_tilde_x_gen_base_exceed = find(does_A_eq_tilde_x_gen_base_exceed(:, indi));
                                row_A_eq_tilde_candi = flag_A_eq_tilde_x_gen_base_exceed(randi(length(flag_A_eq_tilde_x_gen_base_exceed)));
                                A_eq_tilde_candi = A_eq_tilde(row_A_eq_tilde_candi, :);
                                Eq_tilde_candi_gen = A_eq_tilde_candi * x_gen_base(:, indi);
                                b_eq_k_tilde_lb = A_eq_tilde_candi * ((A_eq_tilde_candi > 0)' .* lb_base ...
                                                  + (A_eq_tilde_candi < 0)' .* ub_base);
                                b_eq_k_tilde_ub = A_eq_tilde_candi * ((A_eq_tilde_candi > 0)' .* ub_base ...
                                                  + (A_eq_tilde_candi < 0)' .* lb_base);
                                delta_plus = A_eq_tilde_candi * ((A_eq_tilde_candi > 0)' .* (x_gen_base(:, indi) - lb_base) ...
                                             + (A_eq_tilde_candi < 0)' .* (x_gen_base(:, indi) - ub_base));
                                delta_minus = A_eq_tilde_candi * ((A_eq_tilde_candi > 0)' .* (x_gen_base(:, indi) - ub_base) ...
                                             + (A_eq_tilde_candi < 0)' .* (x_gen_base(:, indi) - lb_base));
                                x_cor_base = zeros(N_D - R_A, 1);
        
                                if Eq_tilde_candi_gen > b_eq_tilde_max(row_A_eq_tilde_candi)
                                    b_eq_k_tilde_best = [b_eq_k_tilde_lb + (delta_plus * (b_eq_tilde_min - A_eq_tilde * ((A_eq_tilde_candi > 0)' ...
                                                        .* lb_base + (A_eq_tilde_candi < 0)' .* ub_base + (A_eq_tilde_candi == 0)' .* x_gen_base(:, indi)))) ...
                                                        ./ (A_eq_tilde * ((A_eq_tilde_candi > 0)' .* (x_gen_base(:, indi) - lb_base) ...
                                                        + (A_eq_tilde_candi < 0)' .* (x_gen_base(:, indi) - ub_base))), ...
                                                        b_eq_k_tilde_lb + (delta_plus * (b_eq_tilde_max - A_eq_tilde * ((A_eq_tilde_candi > 0)' ...
                                                        .* lb_base + (A_eq_tilde_candi < 0)' .* ub_base + (A_eq_tilde_candi == 0)' .* x_gen_base(:, indi)))) ...
                                                        ./ (A_eq_tilde * ((A_eq_tilde_candi > 0)' .* (x_gen_base(:, indi) - lb_base) ...
                                                        + (A_eq_tilde_candi < 0)' .* (x_gen_base(:, indi) - ub_base)));
                                                        b_eq_k_tilde_lb, b_eq_k_tilde_ub];
                                    b_eq_k_tilde_min = max(min(b_eq_k_tilde_best, [], 2), [], 1);
                                    b_eq_k_tilde_max = min(max(b_eq_k_tilde_best, [], 2), [], 1);
                                    if b_eq_k_tilde_min <= b_eq_k_tilde_max
                                        b_eq_k_tilde = b_eq_k_tilde_min + rand * (b_eq_k_tilde_max - b_eq_k_tilde_min);
                                    else
                                        b_eq_k_tilde = b_eq_k_tilde_best(row_A_eq_tilde_candi, 1) + rand * (b_eq_k_tilde_best(row_A_eq_tilde_candi, 2)...
                                                       - b_eq_k_tilde_best(row_A_eq_tilde_candi, 1));
                                    end
                                    x_cor_base(A_eq_tilde_candi > 0) = (((b_eq_k_tilde - b_eq_k_tilde_lb) / delta_plus) ...
                                                                       * (x_gen_base(A_eq_tilde_candi > 0, indi) - lb_base(A_eq_tilde_candi > 0)) ...
                                                                       + lb_base(A_eq_tilde_candi > 0))';
                                    x_cor_base(A_eq_tilde_candi == 0) = (x_gen_base(A_eq_tilde_candi == 0))';
                                    x_cor_base(A_eq_tilde_candi < 0) = (((b_eq_k_tilde - b_eq_k_tilde_lb) / delta_plus) ...
                                                                       * (x_gen_base(A_eq_tilde_candi < 0, indi) - ub_base(A_eq_tilde_candi < 0)) ...
                                                                       + ub_base(A_eq_tilde_candi < 0))';
                                elseif Eq_tilde_candi_gen < b_eq_tilde_min(row_A_eq_tilde_candi)
                                    b_eq_k_tilde_best = [b_eq_k_tilde_ub + (delta_minus * (b_eq_tilde_min - A_eq_tilde * ((A_eq_tilde_candi > 0)' .* ub_base ...
                                                        + (A_eq_tilde_candi < 0)' .* lb_base + (A_eq_tilde_candi == 0)' .* x_gen_base(:, indi))) ./ (A_eq_tilde ...
                                                        * ((A_eq_tilde_candi > 0)' .* (x_gen_base(:, indi) - ub_base) + (A_eq_tilde_candi < 0)' .* ...
                                                        (x_gen_base(:, indi) - lb_base)))), ...
                                                        b_eq_k_tilde_ub + (delta_minus * (b_eq_tilde_max - A_eq_tilde * ((A_eq_tilde_candi > 0)' .* ub_base ...
                                                        + (A_eq_tilde_candi < 0)' .* lb_base + (A_eq_tilde_candi == 0)' .* x_gen_base(:, indi))) ./ (A_eq_tilde ...
                                                        * ((A_eq_tilde_candi > 0)' .* (x_gen_base(:, indi) - ub_base) + (A_eq_tilde_candi < 0)' .* ...
                                                        (x_gen_base(:, indi) - lb_base))));
                                                        b_eq_k_tilde_lb, b_eq_k_tilde_ub];
                                    b_eq_k_tilde_min = max(min(b_eq_k_tilde_best, [], 2), [], 1);
                                    b_eq_k_tilde_max = min(max(b_eq_k_tilde_best, [], 2), [], 1);
                                    if b_eq_k_tilde_min <= b_eq_k_tilde_max
                                        b_eq_k_tilde = b_eq_k_tilde_min + rand * (b_eq_k_tilde_max - b_eq_k_tilde_min);
                                    else
                                        b_eq_k_tilde = b_eq_k_tilde_best(row_A_eq_tilde_candi, 1) + rand * (b_eq_k_tilde_best(row_A_eq_tilde_candi, 2)...
                                                       - b_eq_k_tilde_best(row_A_eq_tilde_candi, 1));
                                    end
                                    x_cor_base(A_eq_tilde_candi > 0) = (((b_eq_k_tilde - b_eq_k_tilde_ub) / delta_minus) ...
                                                                       * (x_gen_base(A_eq_tilde_candi > 0, indi) - ub_base(A_eq_tilde_candi > 0)) ...
                                                                       + ub_base(A_eq_tilde_candi > 0))';
                                    x_cor_base(A_eq_tilde_candi == 0) = (x_gen_base(A_eq_tilde_candi == 0))';
                                    x_cor_base(A_eq_tilde_candi < 0) = (((b_eq_k_tilde - b_eq_k_tilde_ub) / delta_minus) ...
                                                                       * (x_gen_base(A_eq_tilde_candi < 0, indi) - lb_base(A_eq_tilde_candi < 0)) ...
                                                                       + lb_base(A_eq_tilde_candi < 0))';
                                end
                                x_cor(R_A + 1:end, indi) = x_cor_base;
                            end
                        end
                        x_cor(1:R_A, :) = Ab_eq_RREF(1:R_A, end) - A_eq_tilde * x_cor(R_A + 1:end, :);
    
                        for indi = 1:N_P
                            x_cor(abs(x_cor(:, indi) - lb) <= 1e-12, indi) = lb(abs(x_cor(:, indi) - lb) <= 1e-12);
                            x_cor(abs(x_cor(:, indi) - ub) <= 1e-12, indi) = ub(abs(x_cor(:, indi) - ub) <= 1e-12);
                        end
    
                        correction_info.is_feasible = all((x_cor - lb >= -1e-12) & (x_cor - ub <= 1e-12)) ...
                                                      & all(abs(A_eq * x_cor - b_eq) <= 1e-12);
                        correction_info.does_x_cor_exceed.by_bit = (x_cor - lb < -1e-12) | (x_cor - ub > 1e-12);
                        correction_info.does_x_cor_exceed.globally = any((x_cor - lb < -1e-12) | (x_cor - ub > 1e-12));
                        correction_info.is_equation_equal_to_b.by_bit = abs(A_eq * x_cor - b_eq) <= 1e-12;
                        correction_info.is_equation_equal_to_b.globally = all(abs(A_eq * x_cor - b_eq) <= 1e-12);

                        run = run + 1;
                        % Feasible, Theorem 5
                        if all(correction_info.is_feasible)
                            break;
                        end
                        % Infeasible, Theorems 4 & 5
                        if ~any(correction_info.is_feasible) && run >= max_runtime
                            x_cor = [];
                            correction_info.is_feasible = false(1, N_P);
                            correction_info.does_x_cor_exceed.by_bit = true(N_D, N_P);
                            correction_info.does_x_cor_exceed.globally = true(1, N_P);
                            correction_info.is_equation_equal_to_b.by_bit = false(M, N_P);
                            correction_info.is_equation_equal_to_b.globally = false;
                            break;
                        end

                        x_gen = x_cor;
                    end

                end

            end            

        end 
        
    end

end

Problem 1

    对应博客 《一种单线性方程约束下的生成随机数修正方法(结论与应用)》的实例分析部分。

clear;
close all;
clc;

lb = [-3, -1, 2, -4, 0, 1, -6, -5]';
ub = [6, 4, 10, 8, 11, 3, 4, 4]';
x_gen = lb + rand(1, 100) .* (ub - lb);
A_eq = [6, -3, 1, 7, -5, 0, -3, 8];
b_eq = 12;

[x_cor, correction_info] = linear_equations_constraints_correction(x_gen, lb, ub, A_eq, b_eq);

Problem 2

    对应博客 《一种多线性方程约束下的生成随机数修正方法(上)》实例分析部分中的实例1。

clear;
close all;
clc;

lb = [-5, -3, -6, 0]';
ub = [7, 1, -2, 6]';
x_gen = lb + rand(1, 100) .* (ub - lb);
A_eq = [1, 1, 1, 1; 0, 2, 1, 1];
b_eq = [-1, 1]';

[x_cor, correction_info] = linear_equations_constraints_correction(x_gen, lb, ub, A_eq, b_eq);

Problem 3

    对应博客 《一种多线性方程约束下的生成随机数修正方法(上)》实例分析部分中的实例2。

clear;
close all;
clc;

lb = [-8, -15, -2, 0, -3, -10]';
ub = [9, 7, 4, 5, 8, 2]';
x_gen = lb + rand(1, 100) .* (ub - lb);
A_eq = [4, 3, 5, -7, 6, -8; -7, -4, 8, -5, 0, 1];
b_eq = [-2; 14];

[x_cor, correction_info] = linear_equations_constraints_correction(x_gen, lb, ub, A_eq, b_eq);

Problem 4

    对应博客 《一种多线性方程约束下的生成随机数修正方法(上)》和博客 《一种多线性方程约束下的生成随机数修正方法(下)》实例分析部分中的实例3。

clear;
close all;
clc;

lb = [-8, -15, -2, 1, -3, -10]';
ub = [9, 7, 11, 7, 8, 2]';
x_gen = lb + rand(1, 100) .* (ub - lb);
A_eq = [4, 3, 5, -7, 6, -8; -7, -4, 8, -5, 0, 8; 10, 3, -3, 6, -7, 2; 2, -3, -7, 5, -6, 3];
b_eq = [-2; 14; 9; -8];

[x_cor, correction_info] = linear_equations_constraints_correction(x_gen, lb, ub, A_eq, b_eq);

研究目标

    (1) 探究满足线性不等式约束和一般线性约束的生成随机数的修正方法;
    (2) 探究满足某些非线性约束的生成随机数修正方法;
    (3) 将生成随机数修正方法应用到基于启发式算法的优化问题求解中,使得启发式算法能够始终在优化问题的可行域中搜寻问题的解,从而加快启发式优化算法的收敛速度。

  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Academia1998

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值