线性方程约束下修正方法的可行性分析(演绎推理,三)

16 篇文章 0 订阅
15 篇文章 0 订阅

    本文内容接续博客《线性方程约束下修正方法的可行性分析(演绎推理,二)》

多线性方程约束下修正方法的可行性分析

多线性方程约束问题可行性定理

    当 ∑ j = 1 , a ~ k , j > 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right) j=1,a~k,j>0NRa~k,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~k,j(xgen,R+jxR+j) ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right) j=1,a~k,j>0NRa~i,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~i,j(xgen,R+jxR+j)异号时, b ~ ‾ c o r , k ′ ( i ) \underline{\tilde{b}}'_{cor, k} \left( i \right) b~cor,k(i) b ~ ‾ c o r , k ′ ( i ) \overline{\tilde{b}}'_{cor, k} \left( i \right) b~cor,k(i) b ~ ‾ c o r , k ′ ′ ( i ) \underline{\tilde{b}}''_{cor, k} \left( i \right) b~cor,k′′(i) b ~ ‾ c o r , k ′ ′ ( i ) \overline{\tilde{b}}''_{cor, k} \left( i \right) b~cor,k′′(i)分别满足
b ~ ‾ c o r , k ′ ( i ) = ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j ) + ∑ j = 1 , a ~ k , j > 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) × [ ( ∑ j = 1 , a ~ i , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ i , j < 0 N − R a ~ i , j x ‾ R + j ) − ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j = 0 N − R a ~ i , j x g e n , R + j ) ] b ~ ‾ c o r , k ′ ( i ) = ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j ) + ∑ j = 1 , a ~ k , j > 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) × [ ( ∑ j = 1 , a ~ i , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ i , j < 0 N − R a ~ i , j x ‾ R + j ) − ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j = 0 N − R a ~ i , j x g e n , R + j ) ] b ~ ‾ c o r , k ′ ( i ) = ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j ) + ∑ j = 1 , a ~ k , j > 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) × [ ( b R R E F , i − x ‾ i ) − ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j = 0 N − R a ~ i , j x g e n , R + j ) ] b ~ ‾ c o r , k ′ ( i ) = ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j ) + ∑ j = 1 , a ~ k , j > 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) × [ ( b R R E F , i − x ‾ i ) − ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j = 0 N − R a ~ i , j x g e n , R + j ) ] \begin{equation} \begin{split}\tag{19} \underline{\tilde{b}}'_{cor, k} \left( i \right) &= \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} \right) + \dfrac{ \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right)} {\displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right)} \times \left[ \left( \displaystyle \sum_{j = 1, \tilde{a}_{i, j} > 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{i, j} < 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} \right) - \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} = 0}^{N - R} \tilde{a}_{i, j} x_{gen, R + j} \right) \right] \\ \overline{\tilde{b}}'_{cor, k} \left( i \right) &= \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} \right) + \dfrac{ \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right)} {\displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right)} \times \left[ \left( \displaystyle \sum_{j = 1, \tilde{a}_{i, j} > 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{i, j} < 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} \right) - \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} = 0}^{N - R} \tilde{a}_{i, j} x_{gen, R + j} \right) \right] \\ \underline{\tilde{b}}'_{cor, k} \left( i \right) &= \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} \right) + \dfrac{ \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right)} {\displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right)} \times \left[ \left( b_{RREF, i} - \underline{x}_i \right) - \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} = 0}^{N - R} \tilde{a}_{i, j} {x}_{gen, R + j} \right) \right] \\ \overline{\tilde{b}}'_{cor, k} \left( i \right) &= \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} \right) + \dfrac{ \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right)} {\displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right)} \times \left[ \left( b_{RREF, i} - \overline{x}_i \right) - \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} = 0}^{N - R} \tilde{a}_{i, j} {x}_{gen, R + j} \right) \right] \\ \end{split} \end{equation} b~cor,k(i)b~cor,k(i)b~cor,k(i)b~cor,k(i)= j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j +j=1,a~k,j>0NRa~i,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~i,j(xgen,R+jxR+j)j=1,a~k,j>0NRa~k,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~k,j(xgen,R+jxR+j)× j=1,a~i,j>0NRa~i,jxR+j+j=1,a~i,j<0NRa~i,jxR+j j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j+j=1,a~k,j=0NRa~i,jxgen,R+j = j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j +j=1,a~k,j>0NRa~i,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~i,j(xgen,R+jxR+j)j=1,a~k,j>0NRa~k,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~k,j(xgen,R+jxR+j)× j=1,a~i,j>0NRa~i,jxR+j+j=1,a~i,j<0NRa~i,jxR+j j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j+j=1,a~k,j=0NRa~i,jxgen,R+j = j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j +j=1,a~k,j>0NRa~i,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~i,j(xgen,R+jxR+j)j=1,a~k,j>0NRa~k,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~k,j(xgen,R+jxR+j)× (bRREF,ixi) j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j+j=1,a~k,j=0NRa~i,jxgen,R+j = j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j +j=1,a~k,j>0NRa~i,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~i,j(xgen,R+jxR+j)j=1,a~k,j>0NRa~k,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~k,j(xgen,R+jxR+j)× (bRREF,ixi) j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j+j=1,a~k,j=0NRa~i,jxgen,R+j (19)
    (2) 当 ∑ j = 1 N − R a ~ k , j x g e n , R + j < b R R E F , k − x ‾ k \displaystyle \sum_{j = 1}^{N - R} \tilde{a}_{k, j} x_{gen, R + j} < b_{RREF, k} - \overline{x}_k j=1NRa~k,jxgen,R+j<bRREF,kxk时,
b ~ ‾ c o r , k = max ⁡ i = 1 R [ b ~ ‾ c o r , k ′ ( i ) , b ~ ‾ c o r , k ′ ′ ( i ) ] b ~ ‾ c o r , k = min ⁡ i = 1 R [ b ~ ‾ c o r , k ′ ( i ) , b ~ ‾ c o r , k ′ ′ ( i ) ] \begin{equation} \begin{split}\tag{20} \underline{\tilde{b}}_{cor, k} &= \max_{i = 1}^R \left[ \underline{\tilde{b}}'_{cor, k} \left( i \right), \underline{\tilde{b}}''_{cor, k} \left( i \right) \right] \\ \overline{\tilde{b}}_{cor, k} &= \min_{i = 1}^R \left[ \overline{\tilde{b}}'_{cor, k} \left( i \right), \overline{\tilde{b}}''_{cor, k} \left( i \right) \right] \\ \end{split} \end{equation} b~cor,kb~cor,k=i=1maxR[b~cor,k(i),b~cor,k′′(i)]=i=1minR[b~cor,k(i),b~cor,k′′(i)](20)
    当 ∑ j = 1 , a ~ k , j > 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) j=1,a~k,j>0NRa~k,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~k,j(xgen,R+jxR+j) ∑ j = 1 , a ~ i , j > 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ i , j < 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) {\displaystyle \sum_{j = 1, \tilde{a}_{i, j} > 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{i, j} < 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right)} j=1,a~i,j>0NRa~i,j(xgen,R+jxR+j)+j=1,a~i,j<0NRa~i,j(xgen,R+jxR+j)同号时, b ~ ‾ c o r , k ′ ( i ) \underline{\tilde{b}}'_{cor, k} \left( i \right) b~cor,k(i) b ~ ‾ c o r , k ′ ( i ) \overline{\tilde{b}}'_{cor, k} \left( i \right) b~cor,k(i) b ~ ‾ c o r , k ′ ′ ( i ) \underline{\tilde{b}}''_{cor, k} \left( i \right) b~cor,k′′(i) b ~ ‾ c o r , k ′ ′ ( i ) \overline{\tilde{b}}''_{cor, k} \left( i \right) b~cor,k′′(i)分别满足
b ~ ‾ c o r , k ′ ( i ) = ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j ) + ∑ j = 1 , a ~ k , j > 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) ∑ j = 1 , a ~ i , j > 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ i , j < 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) × [ ( ∑ j = 1 , a ~ i , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ i , j < 0 N − R a ~ i , j x ‾ R + j ) − ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j = 0 N − R a ~ i , j x g e n , R + j ) ] b ~ ‾ c o r , k ′ ( i ) = ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j ) + ∑ j = 1 , a ~ k , j > 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) ∑ j = 1 , a ~ i , j > 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ i , j < 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) × [ ( ∑ j = 1 , a ~ i , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ i , j < 0 N − R a ~ i , j x ‾ R + j ) − ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j = 0 N − R a ~ i , j x g e n , R + j ) ] b ~ ‾ c o r , k ′ ′ ( i ) = ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j ) + ∑ j = 1 , a ~ k , j > 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) ∑ j = 1 , a ~ i , j > 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ i , j < 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) × [ ( b R R E F , i − x ‾ i ) − ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j = 0 N − R a ~ i , j x g e n , R + j ) ] b ~ ‾ c o r , k ′ ′ ( i ) = ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j ) + ∑ j = 1 , a ~ k , j > 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) ∑ j = 1 , a ~ i , j > 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ i , j < 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) × [ ( b R R E F , i − x ‾ i ) − ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j = 0 N − R a ~ i , j x g e n , R + j ) ] \begin{equation} \begin{split}\tag{21} \underline{\tilde{b}}'_{cor, k} \left( i \right) &= \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} \right) + \dfrac{ \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right)} {\displaystyle \sum_{j = 1, \tilde{a}_{i, j} > 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{i, j} < 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right)} \times \left[ \left( \displaystyle \sum_{j = 1, \tilde{a}_{i, j} > 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{i, j} < 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} \right) - \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} = 0}^{N - R} \tilde{a}_{i, j} x_{gen, R + j} \right) \right] \\ \overline{\tilde{b}}'_{cor, k} \left( i \right) &= \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} \right) + \dfrac{ \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right)} {\displaystyle \sum_{j = 1, \tilde{a}_{i, j} > 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{i, j} < 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right)} \times \left[ \left( \displaystyle \sum_{j = 1, \tilde{a}_{i, j} > 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{i, j} < 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} \right) - \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} = 0}^{N - R} \tilde{a}_{i, j} x_{gen, R + j} \right) \right] \\ \underline{\tilde{b}}''_{cor, k} \left( i \right) &= \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} \right) + \dfrac{ \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right)} {\displaystyle \sum_{j = 1, \tilde{a}_{i, j} > 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{i, j} < 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right)} \times \left[ \left( b_{RREF, i} - \overline{x}_i \right) - \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} = 0}^{N - R} \tilde{a}_{i, j} x_{gen, R + j} \right) \right] \\ \overline{\tilde{b}}''_{cor, k} \left( i \right) &= \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} \right) + \dfrac{ \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right)} {\displaystyle \sum_{j = 1, \tilde{a}_{i, j} > 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{i, j} < 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right)} \times \left[ \left( b_{RREF, i} - \underline{x}_i \right) - \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} = 0}^{N - R} \tilde{a}_{i, j} x_{gen, R + j} \right) \right] \\ \end{split} \end{equation} b~cor,k(i)b~cor,k(i)b~cor,k′′(i)b~cor,k′′(i)= j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j +j=1,a~i,j>0NRa~i,j(xgen,R+jxR+j)+j=1,a~i,j<0NRa~i,j(xgen,R+jxR+j)j=1,a~k,j>0NRa~k,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~k,j(xgen,R+jxR+j)× j=1,a~i,j>0NRa~i,jxR+j+j=1,a~i,j<0NRa~i,jxR+j j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j+j=1,a~k,j=0NRa~i,jxgen,R+j = j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j +j=1,a~i,j>0NRa~i,j(xgen,R+jxR+j)+j=1,a~i,j<0NRa~i,j(xgen,R+jxR+j)j=1,a~k,j>0NRa~k,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~k,j(xgen,R+jxR+j)× j=1,a~i,j>0NRa~i,jxR+j+j=1,a~i,j<0NRa~i,jxR+j j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j+j=1,a~k,j=0NRa~i,jxgen,R+j = j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j +j=1,a~i,j>0NRa~i,j(xgen,R+jxR+j)+j=1,a~i,j<0NRa~i,j(xgen,R+jxR+j)j=1,a~k,j>0NRa~k,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~k,j(xgen,R+jxR+j)× (bRREF,ixi) j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j+j=1,a~k,j=0NRa~i,jxgen,R+j = j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j +j=1,a~i,j>0NRa~i,j(xgen,R+jxR+j)+j=1,a~i,j<0NRa~i,j(xgen,R+jxR+j)j=1,a~k,j>0NRa~k,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~k,j(xgen,R+jxR+j)× (bRREF,ixi) j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j+j=1,a~k,j=0NRa~i,jxgen,R+j (21)

    剩余内容参见博客 《线性方程约束下修正方法的可行性分析(演绎推理,四)》

  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Academia1998

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值