线性方程约束下修正方法的可行性分析(演绎推理,二)

16 篇文章 0 订阅
15 篇文章 0 订阅

    本文内容接续博客 《线性方程约束下修正方法的可行性分析(演绎推理,一)》

单线性方程约束下修正方法的可行性分析

修正结果与单线性约束问题可行性定理之间的联系

    情况2: 当 ∑ j = 1 N a 1 , j x g e n , j < b 1 \displaystyle \sum_{j = 1}^{N} a_{1, j} x_{gen, j} < b_1 j=1Na1,jxgen,j<b1时,
∑ j = 1 , a 1 , j > 0 N a 1 , j ( x g e n , j − x ‾ j ) + ∑ j = 1 , a 1 , j < 0 N a 1 , j ( x g e n , j − x ‾ j ) < 0 \displaystyle \sum_{j = 1,a_{1, j} > 0}^{N} a_{1, j} \left( x_{gen, j} - \overline{x}_j \right) + \displaystyle \sum_{j = 1, a_{1, j} < 0}^{N} a_{1, j} \left( x_{gen, j} - \underline{x}_j \right) < 0 j=1,a1,j>0Na1,j(xgen,jxj)+j=1,a1,j<0Na1,j(xgen,jxj)<0,其修正解在实数空间上的分布可分如下情况进行讨论:

    情况2.1:当单线性方程约束问题有解时,根据单线性方程约束问题可行性定理可知 ∑ j = 1 , a 1 , j > 0 N a 1 , j x ‾ j + ∑ j = 1 , a 1 , j < 0 N a 1 , j x ‾ j ≤ b 1 ≤ ∑ j = 1 , a 1 , j > 0 N a 1 , j x ‾ j + ∑ j = 1 , a 1 , j < 0 N a 1 , j x ‾ j \displaystyle \sum_{j = 1, a_{1, j} > 0}^{N} a_{1, j} \underline{x}_j + \displaystyle \sum_{j = 1, a_{1, j} < 0}^{N} a_{1, j} \overline{x}_j ≤ b_1 ≤ \displaystyle \sum_{j = 1, a_{1, j} > 0}^{N} a_{1, j} \overline{x}_j + \displaystyle \sum_{j = 1, a_{1, j} < 0}^{N} a_{1, j} \underline{x}_j j=1,a1,j>0Na1,jxj+j=1,a1,j<0Na1,jxjb1j=1,a1,j>0Na1,jxj+j=1,a1,j<0Na1,jxj,将其代入修正结果,可得
x c o r , j = { b 1 − ( ∑ j = 1 , a 1 , j > 0 N a 1 , j x ‾ j + ∑ j = 1 , a 1 , j < 0 N a 1 , j x ‾ j ) ∑ j = 1 , a 1 , j > 0 N a 1 , j ( x g e n , j − x ‾ j ) + ∑ j = 1 , a 1 , j < 0 N a 1 , j ( x g e n , j − x ‾ j ) ( x g e n , j − x ‾ j ) + x ‾ j ∈ [ x ‾ j , x ‾ j ] ( a 1 , j > 0 ) x g e n , j ∈ [ x ‾ j , x ‾ j ] ( a 1 , j = 0 ) b 1 − ( ∑ j = 1 , a 1 , j > 0 N a 1 , j x ‾ j + ∑ j = 1 , a 1 , j < 0 N a 1 , j x ‾ j ) ∑ j = 1 , a 1 , j > 0 N a 1 , j ( x g e n , j − x ‾ j ) + ∑ j = 1 , a 1 , j < 0 N a 1 , j ( x g e n , j − x ‾ j ) ( x g e n , j − x ‾ j ) + x ‾ j ∈ [ x ‾ j , x ‾ j ] ( a 1 , j < 0 ) \begin{equation}\tag{13} x_{cor, j} = \begin{cases} \dfrac{b_1 - \left( \displaystyle \sum_{j = 1,a_{1, j}>0}^{N} a_{1, j} \overline{x}_j + \displaystyle\sum_{j = 1, a_{1, j} < 0}^{N} a_{1, j} \underline{x}_j \right)} {\displaystyle \sum_{j = 1,a_{1, j} > 0}^{N} a_{1, j} \left(x_{gen, j} - \overline{x}_j \right) + \displaystyle\sum_{j = 1, a_{1, j}<0}^{N} a_{1, j} \left( x_{gen, j} - \underline{x}_j \right)} \left( x_{gen, j} - \overline{x}_j \right) + \overline{x}_j ∈ \left[ \underline{x}_j, \overline{x}_j \right] & \left( a_{1, j} > 0 \right) \\ x_{gen, j} ∈ \left[ \underline{x}_j, \overline{x}_j \right] & \left( a_{1, j} = 0\right) \\ \dfrac{b_1 - \left( \displaystyle \sum_{j = 1, a_{1, j}>0}^{N} a_{1, j} \overline{x}_j + \displaystyle \sum_{j = 1, a_{1, j} < 0}^{N} a_{1, j} \underline{x}_j \right)} {\displaystyle \sum_{j = 1,a_{1, j} > 0}^{N} a_{1, j} \left( x_{gen, j} - \overline{x}_j \right) + \displaystyle \sum_{j = 1, a_{1, j}<0}^{N} a_{1, j} \left( x_{gen, j} - \underline{x}_j \right)} \left( x_{gen, j} - \underline{x}_j \right) + \underline{x}_j ∈ \left[ \underline{x}_j, \overline{x}_j \right] & \left( a_{1, j} < 0 \right) \\ \end{cases} \end{equation} xcor,j= j=1,a1,j>0Na1,j(xgen,jxj)+j=1,a1,j<0Na1,j(xgen,jxj)b1 j=1,a1,j>0Na1,jxj+j=1,a1,j<0Na1,jxj (xgen,jxj)+xj[xj,xj]xgen,j[xj,xj]j=1,a1,j>0Na1,j(xgen,jxj)+j=1,a1,j<0Na1,j(xgen,jxj)b1 j=1,a1,j>0Na1,jxj+j=1,a1,j<0Na1,jxj (xgen,jxj)+xj[xj,xj](a1,j>0)(a1,j=0)(a1,j<0)(13)

    情况2.2:当单线性方程约束问题无解时,根据单线性方程约束问题可行性定理可知 b 1 < ∑ j = 1 , a 1 , j > 0 N a 1 , j x ‾ j + ∑ j = 1 , a 1 , j < 0 N a 1 , j x ‾ j b_1 < \displaystyle \sum_{j = 1, a_{1, j} > 0}^{N} a_{1, j} \underline{x}_j + \displaystyle\sum_{j = 1, a_{1, j} < 0}^{N} a_{1, j} \overline{x}_j b1<j=1,a1,j>0Na1,jxj+j=1,a1,j<0Na1,jxj b 1 > ∑ j = 1 , a 1 , j > 0 N a 1 , j x ‾ j + ∑ j = 1 , a 1 , j < 0 N a 1 , j x ‾ j b_1 > \displaystyle \sum_{j = 1, a_{1, j} > 0}^{N} a_{1, j} \overline{x}_j + \displaystyle \sum_{j = 1, a_{1, j} < 0}^{N} a_{1, j} \underline{x}_j b1>j=1,a1,j>0Na1,jxj+j=1,a1,j<0Na1,jxj,将其代入修正结果,可得

    情况2.2.1:当 b 1 < ∑ j = 1 , a 1 , j > 0 N a 1 , j x ‾ j + ∑ j = 1 , a 1 , j < 0 N a 1 , j x ‾ j b_1 < \displaystyle \sum_{j = 1, a_{1, j} > 0}^{N} a_{1, j} \underline{x}_j + \displaystyle\sum_{j = 1, a_{1, j} < 0}^{N} a_{1, j} \overline{x}_j b1<j=1,a1,j>0Na1,jxj+j=1,a1,j<0Na1,jxj
x c o r , j = { b 1 − ( ∑ j = 1 , a 1 , j > 0 N a 1 , j x ‾ j + ∑ j = 1 , a 1 , j < 0 N a 1 , j x ‾ j ) ∑ j = 1 , a 1 , j > 0 N a 1 , j ( x g e n , j − x ‾ j ) + ∑ j = 1 , a 1 , j < 0 N a 1 , j ( x g e n , j − x ‾ j ) ( x g e n , j − x ‾ j ) + x ‾ j < x ‾ j ( a 1 , j > 0 ) x g e n , j ∈ [ x ‾ j , x ‾ j ] ( a 1 , j = 0 ) b 1 − ( ∑ j = 1 , a 1 , j > 0 N a 1 , j x ‾ j + ∑ j = 1 , a 1 , j < 0 N a 1 , j x ‾ j ) ∑ j = 1 , a 1 , j > 0 N a 1 , j ( x g e n , j − x ‾ j ) + ∑ j = 1 , a 1 , j < 0 N a 1 , j ( x g e n , j − x ‾ j ) ( x g e n , j − x ‾ j ) + x ‾ j > x ‾ j ( a 1 , j < 0 ) \begin{equation}\tag{14} x_{cor, j} = \begin{cases} \dfrac{b_1 - \left( \displaystyle \sum_{j = 1,a_{1, j}>0}^{N} a_{1, j} \overline{x}_j + \displaystyle\sum_{j = 1, a_{1, j} < 0}^{N} a_{1, j} \underline{x}_j \right)} {\displaystyle \sum_{j = 1,a_{1, j} > 0}^{N} a_{1, j} \left(x_{gen, j} - \overline{x}_j \right) + \displaystyle\sum_{j = 1, a_{1, j}<0}^{N} a_{1, j} \left( x_{gen, j} - \underline{x}_j \right)} \left( x_{gen, j} - \overline{x}_j \right) + \overline{x}_j < \underline{x}_j & \left( a_{1, j} > 0 \right) \\ x_{gen, j} ∈ \left[ \underline{x}_j, \overline{x}_j \right] & \left( a_{1, j} = 0\right) \\ \dfrac{b_1 - \left( \displaystyle \sum_{j = 1, a_{1, j}>0}^{N} a_{1, j} \overline{x}_j + \displaystyle \sum_{j = 1, a_{1, j} < 0}^{N} a_{1, j} \underline{x}_j \right)} {\displaystyle \sum_{j = 1,a_{1, j} > 0}^{N} a_{1, j} \left( x_{gen, j} - \overline{x}_j \right) + \displaystyle \sum_{j = 1, a_{1, j}<0}^{N} a_{1, j} \left( x_{gen, j} - \underline{x}_j \right)} \left( x_{gen, j} - \underline{x}_j \right) + \underline{x}_j > \overline{x}_j & \left( a_{1, j} < 0 \right) \\ \end{cases} \end{equation} xcor,j= j=1,a1,j>0Na1,j(xgen,jxj)+j=1,a1,j<0Na1,j(xgen,jxj)b1 j=1,a1,j>0Na1,jxj+j=1,a1,j<0Na1,jxj (xgen,jxj)+xj<xjxgen,j[xj,xj]j=1,a1,j>0Na1,j(xgen,jxj)+j=1,a1,j<0Na1,j(xgen,jxj)b1 j=1,a1,j>0Na1,jxj+j=1,a1,j<0Na1,jxj (xgen,jxj)+xj>xj(a1,j>0)(a1,j=0)(a1,j<0)(14)

    情况2.2.2:当 b 1 > ∑ j = 1 , a 1 , j > 0 N a 1 , j x ‾ j + ∑ j = 1 , a 1 , j < 0 N a 1 , j x ‾ j b_1 > \displaystyle \sum_{j = 1, a_{1, j} > 0}^{N} a_{1, j} \overline{x}_j + \displaystyle\sum_{j = 1, a_{1, j} < 0}^{N} a_{1, j} \underline{x}_j b1>j=1,a1,j>0Na1,jxj+j=1,a1,j<0Na1,jxj
x c o r , j = { b 1 − ( ∑ j = 1 , a 1 , j > 0 N a 1 , j x ‾ j + ∑ j = 1 , a 1 , j < 0 N a 1 , j x ‾ j ) ∑ j = 1 , a 1 , j > 0 N a 1 , j ( x g e n , j − x ‾ j ) + ∑ j = 1 , a 1 , j < 0 N a 1 , j ( x g e n , j − x ‾ j ) ( x g e n , j − x ‾ j ) + x ‾ j > x ‾ j ( a 1 , j > 0 ) x g e n , j ∈ [ x ‾ j , x ‾ j ] ( a 1 , j = 0 ) b 1 − ( ∑ j = 1 , a 1 , j > 0 N a 1 , j x ‾ j + ∑ j = 1 , a 1 , j < 0 N a 1 , j x ‾ j ) ∑ j = 1 , a 1 , j > 0 N a 1 , j ( x g e n , j − x ‾ j ) + ∑ j = 1 , a 1 , j < 0 N a 1 , j ( x g e n , j − x ‾ j ) ( x g e n , j − x ‾ j ) + x ‾ j < x ‾ j ( a 1 , j < 0 ) \begin{equation}\tag{15} x_{cor, j} = \begin{cases} \dfrac{b_1 - \left( \displaystyle \sum_{j = 1,a_{1, j}>0}^{N} a_{1, j} \overline{x}_j + \displaystyle\sum_{j = 1, a_{1, j} < 0}^{N} a_{1, j} \underline{x}_j \right)} {\displaystyle \sum_{j = 1,a_{1, j} > 0}^{N} a_{1, j} \left(x_{gen, j} - \overline{x}_j \right) + \displaystyle\sum_{j = 1, a_{1, j}<0}^{N} a_{1, j} \left( x_{gen, j} - \underline{x}_j \right)} \left( x_{gen, j} - \overline{x}_j \right) + \overline{x}_j > \overline{x}_j & \left( a_{1, j} > 0 \right) \\ x_{gen, j} ∈ \left[ \underline{x}_j, \overline{x}_j \right] & \left( a_{1, j} = 0\right) \\ \dfrac{b_1 - \left( \displaystyle \sum_{j = 1, a_{1, j}>0}^{N} a_{1, j} \overline{x}_j + \displaystyle \sum_{j = 1, a_{1, j} < 0}^{N} a_{1, j} \underline{x}_j \right)} {\displaystyle \sum_{j = 1,a_{1, j} > 0}^{N} a_{1, j} \left( x_{gen, j} - \overline{x}_j \right) + \displaystyle \sum_{j = 1, a_{1, j}<0}^{N} a_{1, j} \left( x_{gen, j} - \underline{x}_j \right)} \left( x_{gen, j} - \underline{x}_j \right) + \underline{x}_j < \underline{x}_j & \left( a_{1, j} < 0 \right) \\ \end{cases} \end{equation} xcor,j= j=1,a1,j>0Na1,j(xgen,jxj)+j=1,a1,j<0Na1,j(xgen,jxj)b1 j=1,a1,j>0Na1,jxj+j=1,a1,j<0Na1,jxj (xgen,jxj)+xj>xjxgen,j[xj,xj]j=1,a1,j>0Na1,j(xgen,jxj)+j=1,a1,j<0Na1,j(xgen,jxj)b1 j=1,a1,j>0Na1,jxj+j=1,a1,j<0Na1,jxj (xgen,jxj)+xj<xj(a1,j>0)(a1,j=0)(a1,j<0)(15)

    综上所述,单线性方程约束问题有解时,博客《一种线性方程约束下生成随机数修正的一般性方法(上)》中式(11)和(12)所示的修正公式可将任意不满足单线性方程约束的生成随机向量 x g e n \boldsymbol{x_{gen}} xgen,修正为既满足变量上下限约束又满足单线性方程约束的修正向量 x c o r \boldsymbol{x_{cor}} xcor,从而将其作为单线性方程约束问题的其中一个可行解;而单线性方程约束问题无解时,对于任意不满足单线性方程约束的生成随机向量 x g e n \boldsymbol{x_{gen}} xgen,则通过博客《一种线性方程约束下生成随机数修正的一般性方法(上)》中式(11)和(12)所示的修正公式得到的修正向量 x c o r \boldsymbol{x_{cor}} xcor总是无法满足变量上下限约束,恰与单线性方程约束问题无解的条件相印证。

多线性方程约束下修正方法的可行性分析

    多线性方程约束对应于博客《一种线性方程约束下生成随机数修正的一般性方法(上)》、博客《一种线性方程约束下生成随机数修正的一般性方法(中)》、博客《一种线性方程约束下生成随机数修正的一般性方法(下)》中除情况2.2.1以外的所有内容,根据上述博客的结论可知:
    (1) 情况1 N N N维实数空间内无解,必然无法通过上述博客所提修正方法将不可行的生成随机量修正为可行解;
    (2) 情况2.1 N N N维实数空间内有且仅有唯一解,当该唯一解在随机变量的上下界范围时则存在唯一解,否则无解;
    (3) 情况2.2.2.1 N N N维实数空间内有无穷多解,且所提修正方法必然能够在随机变量的上下界范围内生成满足所有线性方程约束的修正解,必然可以通过上述博客所提修正方法将不可行的生成随机量修正为可行解;
    (4) 情况2.2.2.2.1 N N N维实数空间内有无穷多解,但在随机变量的上下界范围内必然无解,必然无法通过上述博客所提修正方法将不可行的生成随机量修正为可行解;
    (5) 情况2.2.2.2.2 N N N维实数空间内有无穷多解,但生成解若能在随机变量的上下界范围内修正为可行解,则须满足博客《一种线性方程约束下生成随机数修正的一般性方法(上)》中的式(19)或博客《一种线性方程约束下生成随机数修正的一般性方法(中)》中的式(25),否则不能通过单次修正即将不可行的生成随机量修正为可行解。
    综上所述,仅有博客《一种线性方程约束下生成随机数修正的一般性方法(上)》、博客《一种线性方程约束下生成随机数修正的一般性方法(中)》、博客《一种线性方程约束下生成随机数修正的一般性方法(下)》中的情况2.2.2.2.2尚未确定生成随机数修正方法的可行性,因此只需完成针对该情况的讨论分析即可得到所有多线性方程约束下修正方法的可行性分析结果。

多线性方程约束问题可行性定理

    定理2:对于博客《一种线性方程约束下生成随机数修正的一般性方法(上)》式(1)所示问题,若经系数矩阵行最简形变换后的常数向量 b R R E F \boldsymbol{b_{RREF}} bRREF自第 ( R + 1 ) \left( R + 1 \right) (R+1)列到第 M M M列不存在非零元素,且线性方程组对应系数矩阵的秩 1 < R < N 1 < R < N 1<R<N时,若存在 k ∈ { 1 , ⋯   , R } k ∈ \{ 1, \cdots, R \} k{1,,R},使得修正后的随机向量中的第 ( R + 1 ) \left( R + 1 \right) (R+1)到第 N N N个分量 x g e n , R + 1 , ⋯   , x g e n , N x_{gen, R + 1}, \cdots, x_{gen, N} xgen,R+1,,xgen,N无法满足式(16)所示的约束条件
b R R E F , k − x ‾ k ≤ b ~ k = ∑ j = 1 N − R a ~ k , j x R + j ≤ b R R E F , k − x ‾ k \begin{equation}\tag{16} b_{RREF, k} - \overline{x}_k ≤ \tilde{b}_k = \displaystyle \sum_{j = 1}^{N - R} \tilde{a}_{k, j} x_{R + j} ≤ b_{RREF, k} - \underline{x}_k \end{equation} bRREF,kxkb~k=j=1NRa~k,jxR+jbRREF,kxk(16)
则将生成的随机向量 x g e n \boldsymbol{x_{gen}} xgen修正后,随机向量 x c o r \boldsymbol{x_{cor}} xcor可作为该问题可行解的充分必要条件为: b ~ ‾ c o r , k ≤ b ~ c o r , k ≤ b ~ ‾ c o r , k \underline{\tilde{b}}_{cor, k} ≤ \tilde{b}_{cor, k} ≤ \overline{\tilde{b}}_{cor, k} b~cor,kb~cor,kb~cor,k,其中: b ~ c o r , k = ∑ j = 1 N − R a ~ k , j x c o r , R + j \tilde{b}_{cor, k} = \displaystyle \sum_{j = 1}^{N - R} \tilde{a}_{k, j} x_{cor, R + j} b~cor,k=j=1NRa~k,jxcor,R+j
    (1) 当 ∑ j = 1 N − R a ~ k , j x g e n , R + j > b R R E F , k − x ‾ k \displaystyle \sum_{j = 1}^{N - R} \tilde{a}_{k, j} x_{gen, R + j} > b_{RREF, k} - \underline{x}_k j=1NRa~k,jxgen,R+j>bRREF,kxk时,
b ~ ‾ c o r , k = max ⁡ i = 1 R [ b ~ ‾ c o r , k ′ ( i ) , b ~ ‾ c o r , k ′ ′ ( i ) ] b ~ ‾ c o r , k = min ⁡ i = 1 R [ b ~ ‾ c o r , k ′ ( i ) , b ~ ‾ c o r , k ′ ′ ( i ) ] \begin{equation}\tag{17} \begin{split} \underline{\tilde{b}}_{cor, k} &= \max_{i = 1}^R \left[ \underline{\tilde{b}}'_{cor, k} \left( i \right), \underline{\tilde{b}}''_{cor, k} \left( i \right) \right] \\ \overline{\tilde{b}}_{cor, k} &= \min_{i = 1}^R \left[ \overline{\tilde{b}}'_{cor, k} \left( i \right), \overline{\tilde{b}}''_{cor, k} \left( i \right) \right] \\ \end{split} \end{equation} b~cor,kb~cor,k=i=1maxR[b~cor,k(i),b~cor,k′′(i)]=i=1minR[b~cor,k(i),b~cor,k′′(i)](17)
    当 ∑ j = 1 , a ~ k , j > 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right) j=1,a~k,j>0NRa~k,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~k,j(xgen,R+jxR+j) ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right) j=1,a~k,j>0NRa~i,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~i,j(xgen,R+jxR+j)同号时, b ~ ‾ c o r , k ′ ( i ) \underline{\tilde{b}}'_{cor, k} \left( i \right) b~cor,k(i) b ~ ‾ c o r , k ′ ( i ) \overline{\tilde{b}}'_{cor, k} \left( i \right) b~cor,k(i) b ~ ‾ c o r , k ′ ′ ( i ) \underline{\tilde{b}}''_{cor, k} \left( i \right) b~cor,k′′(i) b ~ ‾ c o r , k ′ ′ ( i ) \overline{\tilde{b}}''_{cor, k} \left( i \right) b~cor,k′′(i)分别满足
b ~ ‾ c o r , k ′ ( i ) = ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j ) + ∑ j = 1 , a ~ k , j > 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) × [ ( ∑ j = 1 , a ~ i , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ i , j < 0 N − R a ~ i , j x ‾ R + j ) − ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j = 0 N − R a ~ i , j x g e n , R + j ) ] b ~ ‾ c o r , k ′ ( i ) = ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j ) + ∑ j = 1 , a ~ k , j > 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) × [ ( ∑ j = 1 , a ~ i , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ i , j < 0 N − R a ~ i , j x ‾ R + j ) − ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j = 0 N − R a ~ i , j x g e n , R + j ) ] b ~ ‾ c o r , k ′ ′ ( i ) = ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j ) + ∑ j = 1 , a ~ k , j > 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) × [ ( b R R E F , i − x ‾ i ) − ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j = 0 N − R a ~ i , j x g e n , R + j ) ] b ~ ‾ c o r , k ′ ′ ( i ) = ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j ) + ∑ j = 1 , a ~ k , j > 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ k , j ( x g e n , R + j − x ‾ R + j ) ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j ( x g e n , R + j − x ‾ R + j ) × [ ( b R R E F , i − x ‾ i ) − ( ∑ j = 1 , a ~ k , j > 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j < 0 N − R a ~ i , j x ‾ R + j + ∑ j = 1 , a ~ k , j = 0 N − R a ~ i , j x g e n , R + j ) ] \begin{equation} \begin{split}\tag{18} \underline{\tilde{b}}'_{cor, k} \left( i \right) &= \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} \right) + \dfrac{ \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right)} {\displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right)} \times \left[ \left( \displaystyle \sum_{j = 1, \tilde{a}_{i, j} > 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{i, j} < 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} \right) - \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} = 0}^{N - R} \tilde{a}_{i, j} x_{gen, R + j} \right) \right] \\ \overline{\tilde{b}}'_{cor, k} \left( i \right) &= \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} \right) + \dfrac{ \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right)} {\displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right)} \times \left[ \left( \displaystyle \sum_{j = 1, \tilde{a}_{i, j} > 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{i, j} < 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} \right) - \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} = 0}^{N - R} \tilde{a}_{i, j} x_{gen, R + j} \right) \right] \\ \underline{\tilde{b}}''_{cor, k} \left( i \right) &= \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} \right) + \dfrac{ \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right)} {\displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right)} \times \left[ \left( b_{RREF, i} - \overline{x}_i \right) - \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} = 0}^{N - R} \tilde{a}_{i, j} x_{gen, R + j} \right) \right] \\ \overline{\tilde{b}}''_{cor, k} \left( i \right) &= \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} \right) + \dfrac{ \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{k, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right)} {\displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \underline{x}_{R + j} \right) + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \left( x_{gen, R + j} - \overline{x}_{R + j} \right)} \times \left[ \left( b_{RREF, i} - \underline{x}_i \right) - \left( \displaystyle \sum_{j = 1, \tilde{a}_{k, j} > 0}^{N - R} \tilde{a}_{i, j} \underline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} < 0}^{N - R} \tilde{a}_{i, j} \overline{x}_{R + j} + \displaystyle \sum_{j = 1, \tilde{a}_{k, j} = 0}^{N - R} \tilde{a}_{i, j} x_{gen, R + j} \right) \right] \\ \end{split} \end{equation} b~cor,k(i)b~cor,k(i)b~cor,k′′(i)b~cor,k′′(i)= j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j +j=1,a~k,j>0NRa~i,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~i,j(xgen,R+jxR+j)j=1,a~k,j>0NRa~k,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~k,j(xgen,R+jxR+j)× j=1,a~i,j>0NRa~i,jxR+j+j=1,a~i,j<0NRa~i,jxR+j j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j+j=1,a~k,j=0NRa~i,jxgen,R+j = j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j +j=1,a~k,j>0NRa~i,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~i,j(xgen,R+jxR+j)j=1,a~k,j>0NRa~k,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~k,j(xgen,R+jxR+j)× j=1,a~i,j>0NRa~i,jxR+j+j=1,a~i,j<0NRa~i,jxR+j j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j+j=1,a~k,j=0NRa~i,jxgen,R+j = j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j +j=1,a~k,j>0NRa~i,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~i,j(xgen,R+jxR+j)j=1,a~k,j>0NRa~k,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~k,j(xgen,R+jxR+j)× (bRREF,ixi) j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j+j=1,a~k,j=0NRa~i,jxgen,R+j = j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j +j=1,a~k,j>0NRa~i,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~i,j(xgen,R+jxR+j)j=1,a~k,j>0NRa~k,j(xgen,R+jxR+j)+j=1,a~k,j<0NRa~k,j(xgen,R+jxR+j)× (bRREF,ixi) j=1,a~k,j>0NRa~i,jxR+j+j=1,a~k,j<0NRa~i,jxR+j+j=1,a~k,j=0NRa~i,jxgen,R+j (18)

    剩余内容参见博客 《线性方程约束下修正方法的可行性分析(演绎推理,三)》

  • 8
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Academia1998

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值