利用比较判别法判断反常积分敛散性

  • 利用比较判别法判断反常积分敛散性

两类反常积分

在上一篇关于反常积分的文章里讲到,根据积分式中不同位置的"反常"的情况,可以将反常积分分为两类:

  • 积分区间的"反常"

积分区间是无穷区间,例如
∫ 1 ∞ 1 x 2 d x \int_{1}^{\infty} \frac{1}{x^{2}} d x 1x21dx
这里,积分上限是无穷大。

  • 被积函数的"反常"

积分区间是有穷区间,但是被积函数趋向积分区间边缘时的极限是无穷的,例如
∫ 0 1 1 x d x \int_{0}^{1} \frac{1}{x} d x 01x1dx
这里,被积函数在 x + = 0 x^+=0 x+=0 处趋于 + ∞ +\infty + x − x^- x 处趋于 + ∞ +\infty +

使得被积函数趋于无穷的点称为奇点。在上述例子中, x = 0 x=0 x=0 就是积分 ∫ 0 1 1 x d x \int_{0}^{1} \frac{1}{x} d x 01x1dx 的奇点。


比较判别法判断敛散性

比较判别法的核心思想是,对于一个未知敛散性的反常积分(含有函数 f ( x ) f(x) f(x) ),通过引入一个已知敛散性的反常积分(含有函数 g ( x ) g(x) g(x)) ,将积分式中的被积函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x) 进行比较,然后得出含 f ( x ) f(x) f(x) 的反常积分敛散性。

比较判别法中, f ( x ) f(x) f(x) g ( x ) g(x) g(x) 比较的形式有两种,分别是不等式的比较和极限的比较


f ( x ) f(x) f(x) g ( x ) g(x) g(x) 不等式形式的比较

积分区间是无穷区间
  • 条件

非负函数 f ( x ) , g ( x ) f(x),g(x) f(x),g(x) [ a , + ∞ ) [a,+\infty) [a,+) 上连续,且 0 ≤ f ( x ) ≤ g ( x ) 0 \leq f(x) \leq g(x) 0f(x)g(x)

  • 结论
    ∫ a + ∞ g ( x ) d x 收敛 → ∫ a + ∞ f ( x ) d x 收敛 \int_{a}^{+\infty} g(x) d x 收敛\rightarrow \int_{a}^{+\infty} f(x) dx 收敛 a+g(x)dx收敛a+f(x)dx收敛
被积函数是无界函数
  • 条件
  1. 非负函数 f ( x ) , g ( x ) f(x),g(x) f(x),g(x) ( a , b ] (a,b] (a,b] 上连续, 且 0 ≤ f ( x ) ≤ g ( x ) 0 \leq f(x) \leq g(x) 0f(x)g(x)
  2. lim ⁡ x → a + f ( x ) = ∞ \lim_{x\rightarrow a^+}{f(x)=\infty} limxa+f(x)=
  • 结论

∫ a b g ( x ) d x 收敛 → ∫ a b f ( x ) d x 收敛 \int_{a}^{b} g(x) d x 收敛\rightarrow \int_{a}^{b} f(x) dx 收敛 abg(x)dx收敛abf(x)dx收敛


f ( x ) f(x) f(x) g ( x ) g(x) g(x) 极限形式的比较

积分区间是无穷区间
  • 条件
  1. 非负函数 f ( x ) , g ( x ) f(x),g(x) f(x),g(x) [ a , + ∞ ) [a,+\infty) [a,+) 上连续

  2. lim ⁡ x → ∞ f ( x ) g ( x ) = c \lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=c xlimg(x)f(x)=c

  • 结论

0 < c < + ∞ 0<c<+\infty 0<c<+ 时,
∫ a + ∞ g ( x ) d x 与 ∫ a + ∞ f ( x ) d x 具有相同的敛散性 \int_{a}^{+\infty} g(x) d x 与\int_{a}^{+\infty} f(x) dx 具有相同的敛散性 a+g(x)dxa+f(x)dx具有相同的敛散性
c = 0 c=0 c=0 时,
∫ a + ∞ g ( x ) d x 收敛 → ∫ a + ∞ f ( x ) d x 收敛 \int_{a}^{+\infty} g(x) d x 收敛\rightarrow \int_{a}^{+\infty} f(x) dx 收敛 a+g(x)dx收敛a+f(x)dx收敛
c = + ∞ c=+\infty c=+ 时,
∫ a + ∞ g ( x ) d x 发散 → ∫ a + ∞ f ( x ) d x 发散 \int_{a}^{+\infty} g(x) d x 发散\rightarrow \int_{a}^{+\infty} f(x) dx 发散 a+g(x)dx发散a+f(x)dx发散

被积函数是无界函数
  • 条件
  1. 非负函数 f ( x ) , g ( x ) f(x),g(x) f(x),g(x) ( a , b ] (a,b] (a,b] 上连续

  2. lim ⁡ x → a + f ( x ) g ( x ) = c \lim _{x \rightarrow a^+} \frac{f(x)}{g(x)}=c xa+limg(x)f(x)=c

  • 结论

0 < c < + ∞ 0<c<+\infty 0<c<+ 时,
∫ a b g ( x ) d x 与 ∫ a b f ( x ) d x 具有相同的敛散性 \int_{a}^{b} g(x) d x 与\int_{a}^{b} f(x) dx 具有相同的敛散性 abg(x)dxabf(x)dx具有相同的敛散性
c = 0 c=0 c=0 时,
∫ a b g ( x ) d x 收敛 → ∫ a b f ( x ) d x 收敛 \int_{a}^{b} g(x) d x 收敛\rightarrow \int_{a}^{b} f(x) dx 收敛 abg(x)dx收敛abf(x)dx收敛
c = + ∞ c=+\infty c=+ 时,
∫ a b g ( x ) d x 发散 → ∫ a b f ( x ) d x 发散 \int_{a}^{b} g(x) d x 发散\rightarrow \int_{a}^{b} f(x) dx 发散 abg(x)dx发散abf(x)dx发散

  • 18
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

姚杰献

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值