英语不太行?数模美赛必备的翻译工具!

DeepL翻译:全世界最准确的翻译(自称)

图片

网址:https://www.deepl.com/translator

  • 优点:在专有名词翻译方面很准确,适合学术论文,可免费全文件翻译

  • 缺点:全文件翻译时格式较乱,不过可以用于帮助初步理解美赛论文

翻译狗:媲美人工翻译的文档翻译平台(自称)

图片

网址:https://www.fanyigou.com/

  • 优点:可全文件翻译且速度快排版效果很好,双语对比并保持同步页面查看

  • 缺点:多次使用收费,不过产品体验以及售后服务较好

grammarly语法检测:语法纠错和校对

图片

网址:https://app.grammarly.com/

  • 优点:每条批注下面都会配有详细的解释,告诉你哪里错了,为什么要这样修改

  • 缺点:更细节的检错需要付费,不过美赛不需要,免费的功能足够了

注意事项

竞赛时,不要将写好的完整的英文论文提交到翻译或查重/润色的网站,防止被网站泄露导致被查重失去评奖资格。

写与读英文论文,要始终保持耐心,任何软件都是工具,不能把直接把工具的结果复制粘贴就拿来用了。在根本上还是靠自己去改去写。

微信公众号后台回复“美赛”,获取历年赛题与特等奖论文、最新论文模板(含写作与排版指导)

### 远程部署大型深度学习模型 对于拥有有限硬件资源的本地机器而言,远程部署大型深度学习模型是一种有效的方法。具体到70B参数规模的DeepSeek R1模型,可以考虑利用云端计算服务提供商如AWS、Google Cloud Platform或Azure提供的强大GPU实例来进行训练和推理。 为了实现这一目标,在云平台上创建虚拟机并安装必要的依赖环境是首要任务[^1]。这通常涉及配置具有高性能显卡(例如NVIDIA A100)的支持CUDA版本的操作系统镜像。之后,需上传预训练权重文件以及自定义脚本至该环境中。 考虑到数据传输效率与安全性,建议采用SSH协议连接远端服务器,并借助rsync工具同步项目目录下的源码。与此同时,确保网络带宽充足以便于快速下载大规模预训练模型及其配套的数据集。 当一切准备就绪后,可以通过Python包管理器pip安装PyTorch框架及其他辅助库,进而加载指定架构的神经网络结构并执行预测操作: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" if torch.cuda.is_available() else "cpu" model_name_or_path = 'deepseek-r1' tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path).to(device) def generate_text(prompt): inputs = tokenizer(prompt, return_tensors="pt").input_ids.to(device) outputs = model.generate(inputs, max_length=50, num_return_sequences=1) result = tokenizer.decode(outputs[0], skip_special_tokens=True) return result ``` 上述代码片段展示了如何基于Hugging Face Transformers库构建一个简单的文本生成函数`generate_text()`,它能够接收用户输入作为提示词并通过调用已加载好的大模型完成后续创作工作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数学建模BOOM

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值