python中count()、values_counts()、size()函数

count()函数之详解   https://blog.csdn.net/JNingWei/article/details/78308815

转载了count()函数,以便自己以后更好的查阅。

string 中 某字符 的次数

str.count(sub, start= 0,end=len(string))

 

ArgsAnnotations
sub搜索的子字符串
start字符串开始搜索的位置。默认为第一个字符,第一个字符索引值为0。
end字符串中结束搜索的位置。字符中第一个字符的索引为 0。默认为字符串的最后一个位置。

list 中 某元素 的次数

list.count(obj)

ArgsAnnotations
obj搜索的list

实验代码

string 中 某字符 的次数

 
  1. # coding=utf-8

  2. string = 'Hello World ! Hello Python !'

  3. print "string.count(sub) : ", string.count('H')

  4. print "string.count(sub, 1) : ", string.count('H', 1)

  5. print "string.count(sub, 1, 100) : ", string.count('H', 1, 100) # 随便取个 无限大的 end 参数

打印结果:

string.count(sub) :  2
string.count(sub, 1) :  1
string.count(sub, 1, 100) :  1

list 中 某元素 的次数

 
  1. list = [10, 20, 30, 'Hello', 10, 20]

  2. print "list.count('Hello') : ", list.count('Hello')

  3. print "list.count(10) : ", list.count(10)

打印结果:

list.count('Hello') :  1
list.count(10) :  2

pandas 的value_counts()函数可以对Series里面的每个值进行计数并且排序。

现有一个DataFrame

如果我们想知道,每个区域出现了多少次,可以简单如下:

每个区域都被计数,并且默认从最高到最低做降序排列。

如果想用升序排列,可以加参数ascending=True:

如果想得出的计数占比,可以加参数normalize=True:

空值是默认剔除掉的。value_counts()返回的结果是一个Series数组,可以跟别的数组进行运算。

value_count()跟透视表里(pandas或者excel)的计数很相似,都是返回一组唯一值,并进行计数。这样能快速找出重复出现的值。

size()和shape () 是numpy模块中才有的函数

size():计算数组和矩阵所有数据的个数 
a = np.array([[1,2,3],[4,5,6]]) 
np.size(a),返回值为 6 
np.size(a,1),返回值为 3

shape ():得到矩阵每维的大小 
np. shape (a),返回值为 (2,3)

另外要注意的是,shape和size既可以作为函数,也可以作为ndarray的属性 
a.size,返回值为 6, 
a.shape,返回值为 (2,3)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值