如何利用citespace分析cnki里的文献——(1)导入数据

##(一)在cnki中导出数据
按照自己的需要进行检索,选择需要导出的文献题录(最多一次可选择500个),导出格式选为“Refworks”,点击“导出”,导出题录的txt,注意:编码格式为utf-8
##(二)修改文本名称
将所有txt的名称修改为“download_数字”,例如download_1981。
这一步很关键,不然citespace识别不了数据文本。
##(三)转换数据
为了使citespace能够分析cnki的数据,就要将从cnki导出的文献数据转换为wos的格式。
(1)以管理员身份运行citespace.exe文件,打开citespace程序。
(2)新建“input”、“output”、“data”、“project”四个文件夹
(3)将从cnki导出的数据放入“input”文件夹中
(4)在citespace的菜单栏中选择“Data”——“Import/Export”,会出现一个新的界面
(5)在新界面中点击“CNKI”标签
(6)点击“Input Directory”旁边的“Browse”,选择之前新建好的“input”文件夹
(7)点击“Output Directory”旁边的“Browse”,选择之前新建好的“output”文件夹
(8)点击“CNKI Format Conversion(2.0)”按钮,完成转换。
此时,状态栏“Status”会显示转换的条目数,转换格式后的文件会储存在“output”文件夹中。

图1:格式转换界面
图2:成功转换格式的状态栏“Status”显示的内容
“output”文件夹中成功转换后的文件

如何改变编码方式:点击记事本的另存为,可以看到下图,在红框处下拉菜单就可以看到“utf-8”的选项:
在这里插入图片描述

### 使用CiteSpace进行中国知网文献数据分析 #### 数据准备与导入 为了有效利用CiteSpace对中国知网的文献数据展开分析,需先从知网平台获取所需资料。这通常涉及设定特定的时间范围、关键词以及筛选条件来精炼搜索结果[^1]。 #### 建立路径 一旦获得了CSV或REF格式文件形式的文献记录之后,在启动CiteSpace软件后应选择相应的选项以加载这些外部资源。对于来源于CNKI数据集来说,确保选择了匹配其结构化的模板以便于后续处理过程顺利进行[^2]。 #### 数据转换 完成初步导入工作以后,下一步就是对原始文本字段执行必要的清理和标准化操作——比如去除冗余字符、统一日期表达方式等;同时还要指定哪些属性将被纳入最终构建的知识图谱之中(如作者名、机构名称、发表年份)。此阶段可能还需要调整一些参数设置以优化输出效果。 #### 可视化展示与探索 经过上述准备工作完成后,就可以借助内置算法自动生成反映不同维度特征的地图了。例如通过节点大小体现论文影响力程度分布情况;运用颜色渐变标注时间序列变化趋势等等。此外还可以进一步挖掘隐藏在网络背后的潜在联系模式及其演变规律,从而帮助研究人员更直观地把握领域内热点话题和发展脉络。 ```python # 示例Python脚本用于自动化导出并预处理来自数据库的结果为适合输入给定应用程序的形式。 import pandas as pd def preprocess_cnkidata(file_path): df = pd.read_csv(file_path, encoding='gbk') # 清洗和整理数据列 cleaned_df = df.dropna(subset=['title', 'author']) cleaned_df['year'] = pd.to_datetime(cleaned_df['date']).dt.year return cleaned_df[['title', 'author', 'institution', 'abstract', 'keywords', 'year']] ```
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值