使用CiteSpace软件对知网文献进行关键词共现/聚类/突现分析

3f6a7ab0347a4af1a75e6ebadee63fc1.gif

🤵‍♂️ 个人主页:@艾派森的个人主页

✍🏻作者简介:Python学习者
🐋 希望大家多多支持,我们一起进步!😄
如果文章对你有帮助的话,
欢迎评论 💬点赞👍🏻 收藏 📂加关注+


目录

一、CiteSpace软件介绍

### CiteSpace 中的关键词聚类分析 #### 准备工作 为了顺利进行关键词聚类分析,需先确保CiteSpace已正确安装并调整好显示设置。对于高DPI屏幕,可通过右键点击CiteSpace执行程序,选择属性下的兼容性选项卡,点击更改高DPI 设置,并勾选替代高 DPI 缩放行为,将其设为系统(增强),以此使界面字体更易于阅读[^3]。 #### 数据导入 启动CiteSpace后,进入主界面,选择`File` -> `Import References into a New Project...` 导入所需的数据文件。支持多种格式如 ISI, EndNote, RIS 等。完成数据加载之后,可以开始配置参数准备运行聚类算法。 #### 参数设定 在工具栏中找到`Data Citation Network` 或者 `Co-citation Analysis`, 这里针对关键词聚类应选择 `Term Co-occurrence Networks`. 接着,在弹出窗口内指定时间范围以及节点类型(这里选择 Keywords)。另外还需注意的是要适当调节阈值以过滤掉频率过低或过多而无意义的信息项。 #### 执行聚类 当一切就绪后,点击`Run`按钮即可开始处理。CiteSpace会基于选定的时间区间构建络模型并对其中的关键术语实施分组即所谓的“聚类”,从而帮助识别不同时间段内的主要话题领域及其演变趋势[^1]. ```python # Python伪代码示意如何调用命令行接口实自动化流程(仅作概念展示) import subprocess def run_citespace_analysis(input_file_path): command = [ "java", "-jar", "path/to/CiteSpace.jar", "-data", input_file_path, "-function", "termco", "-timeSpan", "startYear-endYear", "-selectionCriteria", "Top N per slice" ] process = subprocess.Popen(command, stdout=subprocess.PIPE) output, error = process.communicate() ```
评论 98
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

艾派森

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值