统计学习方法
然后就去远行吧
我们的目标是星辰大海~
展开
-
有监督学习 —— KNN算法
KNN应用1、KNN简介2、KNN算法的思想3、最佳K值的选择4、相似度的度量方法4.1、欧式距离4.2 曼哈顿距离4.3 余弦相似度4.4 杰卡德相似系数5、近邻样本的搜寻方法5.1 KD搜寻树5.1.1 KD树的构建1、KNN简介KNN算法,中文名称为最近邻算法。和其它有监督算法不同,KNN算法是一种“惰性”学习算法,即不会预先生成一个分类或预测模型,用于新样本的预测,而是将模型的构建与未...原创 2020-08-08 22:28:24 · 5559 阅读 · 1 评论 -
感知机
1、感知机感知机是二类分类的线性分类模型,其输入为实例的特征向量,输出为实例的类别,取+1和-1二值。感知机对应于输入空间(特征空间)中将实例划分为正负两类的分类超平面,属于判别模型。感知机学习旨在求出将训练数据进行线性划分的分类超平面,为此,导入基于误分类的损失函数,利用梯度下降法对损失函数进行极小化,求得感知机模型。感知机学习算法具有简单而易于实现的优点,分为原始形式和对偶形式。感知机预测是用学习得到的感知机模型对于新输入实例进行分类。2、感知机定义假设输入空间(特征空间)是X⊆RnX\sub原创 2020-08-08 01:37:20 · 489 阅读 · 0 评论 -
极大似然估计和贝叶斯估计
极大似然估计和贝叶斯估计在掷硬币实验中估计出现正面向上的概率为θ\thetaθ,通过一系列的实验就可以得到n个观测结果,把每个观测结果都用一个随机变量xix_ixi进行表示,如果抛掷的硬币正面向上则记为1,反面向上则记为0。其表示形式为:xi={1,正面向上0,反面向上x_i=\left\{\begin{matrix}1,正面向上\\ 0,反面向上\end{matrix}\right.xi={1,正面向上0,反面向上因此,随机变量xix_ixi属于二项分布,以θ\thetaθ的概率取值为1原创 2020-08-07 11:03:32 · 456 阅读 · 0 评论 -
机器学习中生成模型和判别模型
监督学习的任务是学习一个模型,应用这一模型,对给定的输入预测相应的输出。这个模型的一般形式为决策函数:Y=f(X)Y=f(X)Y=f(X)或者条件概率分布:P(Y∣X)P(Y|X)P(Y∣X)监督学习方法又可以分为生成方法和判别方法。所学到的模型分别称为生成模型和判别模型;生成方法由数据学习联合概率分布P(X,Y)P(X,Y)P(X,Y),然后求出条件概率分布P(Y∣X)P(Y|X)P(Y∣X...原创 2019-11-05 17:39:17 · 568 阅读 · 0 评论