1. Anaconda安装
安装步骤:
- 官网下载anaconda安装包https://www.anaconda.com/distribution/#download-section;
- 下载好安装包之后,点击运行安装包;
- 选择安装路径,切记要勾选Add Anaconda to the system PATH environment variable,等待安装完成;
- 验证安装成功,打开cmd,输入conda,回车;验证是否将anaconda添加到环境变量中,打开cmd,输入conda list;
- 添加中科大镜像
2.Pycharm安装
- 官网下载安装包https://www.jetbrains.com/pycharm/
- 运行pycharm-professional-2019.2.3.exe
- 选择路径,勾选Add launchers dir to the PATH,等待安装完成
激活步骤
- 下载破解文件:https://pan.baidu.com/s/112tS3XjAENIHaJ-aSCe0dA#list/path=%2F
- 将jetbrains-agent,jar放到pycharm安装目录中\bin文件夹
- 创建空项目,在pycharm64.exe.vmoptions中添加命令-javaagent:安装目录\jetbrains-agent.jar
- 重启,完成激活
3.PyTorch安装
- 检查是否有合适GPU,若有,需安装CUDA与CuDNN
- CUDA与CuDNN安装
- 下载whl文件,登录https://download.pytorch.org/whl/torch_stable.html
- 下载pytorch与torchvision的whl文件,进入相应虚拟环境,通过pip安装
- 在pycharm中创建hello pytorch项目,运行脚本,查看pytorch版本
进入pytorch官网,点击顶部的Get Started,可以看到pytorch支持的CUDA版本有9.2和10.0;
选择其中的9.2版本进行下载:developer.nvidia.com/cuda-92-download-archive
选择相应的操作系统:
之后点击下面的第一个安装文件进行下载:
下载完CUDA之后进入CuDNN的下载:https://developer.nvidia.com/cudnn
下载cudnn需要先登录才能下载,如果是第一次进入这个网站,需要先注册,然后登录进行下载;
登录之后直接点击下载按钮进行下载:
选择前面匹配的CUDA9.2和window10操作系统的CuDNN进行下载:
运行下载好的CUDA安装包,采用默认安装路径,安装完成之后验证CUDA是否安装成功。
首先进入到安装路径下,复制安装路径:
进入到cmd命令窗,切换到安装路径下:
然后执行nvcc -V输入,回车;如果CUDA安装成功,会有以下情况出现;
接着安装CuDNN,解压之前下载的CuDNN安装包,将同目录下的cuda文件夹中的三个文件夹进行复制:
然后粘贴到CUDA安装目录下:
通过以上操作,CuDNN即安装完成;然后需要进入到demo_suite文件夹执行两个程序来查看CuDNN是否安装成功;
在命令行中输入demo_suite文件夹的地址,如下图所示:
接着调用文件夹中的bandwidthTest.exe文件,得到下面的图,如果Result的值是PASS的话,说明安装成功;
接着查询设备,调用demo_suite文件夹中的deviceQuery.exe文件,在命令行中输入deviceQuery.exe,可以看到GPU的型号和result=PASS,表示CUDA和CuDNN都已经安装成功,具体如下图所示:
安装pytorch
进入pytorch官方网站,点击网站上的Get Started功能
可以看到很多安装选项,有很多操作系统,可以通过conda和pin安装,根据前面的安装过程,我们选择window操作系统,通过pin安装,选择Python3.7,CUDA9.2。选定之后,可以看到安装命令中有一个网站,推荐从网站里面下载安装文件,这样下载速度会非常快。
复制Run this Command中的网站,在新的网页打开该网站地址,可以看到该网站中有非常多版本的torch安装文件,这些命名都是很有规律的;第一项是CUDA或者是CPU,我们需要的版本是cu92/torch-1.2.0%2Bcu92-cp37-cp37m-win_amd64.whl,cp37指的是python的版本,点击下载该文件即可。
同样,搜索下载torchvision的安装文件,torchvision目前最新的版本是0.4.0,找到对应的下载文件cu92/torchvision-0.4.0%2Bcu92-cp37-cp37m-win_amd64.whl进行下载。
下载好以上两个文件之后,打开pycharm,创建一个python项目,命名为"hello pytorch";
创建一个python的脚本,点击file,点击new,命名为"hello pytorch"
在代编辑区输入以下代码,点击运行:
import torch
print("hello pytorch {}".format(torch.__version__))
可以看到会显示报错,找不到torch这个工具包。因为在当前的环境中,没有安装pytorch,现在需要用conda创建一个虚拟环境,在虚拟环境中安装pytorch。
点击pycharm左下角的terminal选项,如下所示:
在操作区中使用conda创建一个虚拟环境,输入conda create -n pytorch_gpu python=3.7,回车,等待环境创建完成,具体如下所示:
采用上图中的命令conda activate pytorch_gpu激活虚拟环境,具体如下:
可以看到,在最前面出现了pytorch_gpu,这意味着我们进入了该虚拟环境,然后进入到之前下载的两个文件的存放目录中,目录存放地址如下所示。
在pycharm中的terminal中进入该文件所在位置,如下图所示,输入cd F:\pytorch:
进入目录后,通过pin install + “文件存放的绝对地址”进行cuda的安装,如下图所示:
对于另外一个whl文件,使用同样的方法进行安装,通过pip install + "文件绝对地址"进行安装,如下图所示:
安装完成之后,重新运行一遍程序还是不能运行的,因为目前安装的pytorch_gpu并没有关联到当前的项目当中,需要进行设置。
选择file选项中的setting进行设置,在项目解释器中的project Interpreter中添加刚刚创建的pytorch_gpu当中的解释器。
点击右侧齿轮中的ADD进行添加,选择conda的环境,选择已经存在的环境,找到pytorch_gpu这个虚拟环境的文件夹,打开这个文件夹,可以看到里面有两个exe文件,选择第一个exe文件,点击OK即可。
这样就可以把把pytorch_gpu这个虚拟环境关联到当前项目中,点击OK。然后返回编程界面,稍等片刻让软件进行初始化。初始化完成后,运行程序,根据输出可以看到pytorch安装成功,版本是1.2.0,cuda是9.2版本。
接着可以查看是否支持GPU,在代码中输入
import torch
print("hello pytorch {}".format(torch.__version__))
print(torch.cuda.is_available()) //检查GPU是否可用,返回一个bool值
可以看到其输出为:
证明GPU可以。以上就是pytorch安装的整个过程。