nlp
然后就去远行吧
我们的目标是星辰大海~
展开
-
《Effective Approaches to Attention-based Neural Machine Translation》—— 基于注意力机制的有效神经机器翻译方法
《Effective Approaches to Attention-based Neural Machine Translation》基于注意力机制的有效神经机器翻译方法;作者:Minh-Thang Luong(第一作者);单位:Stanford University;会议:EMNLP 2015;(NLP三大顶会:ACL、EMNLP、NAACL)论文总览Abstract:基于注意力机制的神经机器翻译模型是一种有效的方法,但是目前关于注意力机制模型结构的文章还比较少,本文提出了两种简单但是原创 2020-10-24 22:45:59 · 1966 阅读 · 1 评论 -
自然语言处理中的预训练模型 —— 邱锡鹏老师的演讲记录
目录1、自然语言表示学习1.1 什么是自然语言处理(NLP)1.2 NLP的基础:语言表示1.3 自然语言处理任务1.3.1 序列到类别1.3.2 同步的序列到序列1.3.3 异步的序列到序列1.4 NLP的语义组合1.5 NLP模型演变1.6 NLP中的三大模型1.7 注意力机制:1.7.1 自注意力模型1.7.3 多头自注意力模型1.8 Transformer2、预训练模型2.1 预训练模型之前2.2 为什么要预训练2.3 预训练任务2.4 典型模型2.4.1 Bert2.4.2 SpanBert2.4原创 2020-09-08 16:47:08 · 2031 阅读 · 0 评论 -
深度学习的诀窍
目录1、简述2、当模型在测试数据上性能较差时不要总以为是过拟合3、深度学习提出的方法是应用在哪一方面的?3.1 模型在训练数据上效果不好3.1.1 更换激活函数——ReLU3.1.2 自适应参数学习率3.2 模型在测试数据上效果不好3.2.1 早停3.2.2 正则化3.2.3 Dropout1、简述深度学习模型训练分成三部分:Step1: define a set of function...原创 2020-05-06 22:13:30 · 1000 阅读 · 0 评论 -
NLP——倒排表
问答系统的回顾图中右侧是一个知识库,知识库需要包含两方面信息,每个数据需要包含每个问题和问题对应的答案。假设用户问了一句话:How do you like NLPCamp?这句话经过一系列的文本预处理之后,需要和知识库的每个问题进行匹配,计算用户输入与每个问题的相似度,返回相似度最高的问题对应的答案。这种方法有一个弊端,当知识库数据量太大时,需要计算N次相似度,对于用户的每个问题,都要和知...原创 2020-05-05 17:36:47 · 1151 阅读 · 0 评论 -
词的过滤
词过滤对于NLP的应用,我们通常先把停用词、出现频率很低的词汇进行过滤;这其实类似于特征选择过程。去掉停用词在英文里,比如"the",'in","theirs"这些都可以作为停用词来处理。但是,也要考虑自己的应用场景。去掉低频词出现频率特别低的词汇对分析作用不大,所以一般也会去掉。把停用词、出现频率低的词过滤之后,就可以得到一个词句。词干提取stemmingwent,go,goi...原创 2020-05-03 14:46:24 · 467 阅读 · 0 评论 -
拼写纠错
当用户输入错误时,系统如何识别并进行纠错?拼写错误有两种,第一种是拼写错误,例如上面的theirs,当用户输入的词不存在于词库中时,系统就能知道其输入错误;第二种是语法错误,例如I am go home,应该使用going。当发现用户输入错误之后,可以使用经典的编辑距离寻找可能的输入单词。编辑操作有插入、替换、删除。编辑距离比较小的词是可能的待输入词。词库词量很大,最笨的方法是循环整个词...原创 2020-05-03 14:24:39 · 343 阅读 · 0 评论