蓝桥杯 操作格子(线段数裸题)

  算法训练 操作格子  
时间限制:1.0s   内存限制:256.0MB
      
问题描述

有n个格子,从左到右放成一排,编号为1-n。

共有m次操作,有3种操作类型:

1.修改一个格子的权值,

2.求连续一段格子权值和,

3.求连续一段格子的最大值。

对于每个2、3操作输出你所求出的结果。

输入格式

第一行2个整数n,m。

接下来一行n个整数表示n个格子的初始权值。

接下来m行,每行3个整数p,x,y,p表示操作类型,p=1时表示修改格子x的权值为y,p=2时表示求区间[x,y]内格子权值和,p=3时表示求区间[x,y]内格子最大的权值。

输出格式

有若干行,行数等于p=2或3的操作总数。

每行1个整数,对应了每个p=2或3操作的结果。

样例输入
4 3
1 2 3 4
2 1 3
1 4 3
3 1 4
样例输出
6
3
数据规模与约定

对于20%的数据n <= 100,m <= 200。

对于50%的数据n <= 5000,m <= 5000。

对于100%的数据1 <= n <= 100000,m <= 100000,0 <= 格子权值 <= 10000。

就是个模板题,过去太懒,欠的账都是要还的,一点一点来吧。

#include<stdio.h>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const ll maxn=1e5+10;
struct node{
	ll l,r,v;
	ll m,s;
}tree[4*maxn];
void pushdown(int i)
{
	tree[i].s=tree[i<<1].s+tree[i<<1|1].s;
	tree[i].m=max(tree[i<<1].m,tree[i<<1|1].m);
}
void build(int i,int l,int r)
{
	tree[i].l=l;
	tree[i].r=r;
	if(l==r)
	{
		scanf("%lld",&tree[i].v);
		tree[i].m=tree[i].s=tree[i].v;
		return ;
	}
	int mid = (l+r)/2;	
	build(i<<1,l,mid);
	build(i<<1|1,mid+1,r);
	pushdown(i);
}
void update(int i,int x,int v)
{
	if(tree[i].l>x || tree[i].r<x)
	{
		return ;
	}
	if(tree[i].l==tree[i].r)
	{
		tree[i].m=tree[i].s=tree[i].v=v;
		return ;
	}
	update(i<<1,x,v);
	update(i<<1|1,x,v);
	pushdown(i);
}
ll query_max(int i,int l,int r)
{
	if(tree[i].l>r || tree[i].r<l)
	{
		return 0;
	}
	if(tree[i].l>=l && tree[i].r<=r)
	{
		return tree[i].m;
	}
	return max(query_max(i<<1,l,r),query_max(i<<1|1,l,r));
}
ll query_sum(int i,int l,int r)
{
	if(tree[i].l>r || tree[i].r<l)
	{
		return 0;
	}
	if(tree[i].l>=l && tree[i].r<=r)
	{
		return tree[i].s;
	}
	return query_sum(i<<1,l,r)+query_sum(i<<1|1,l,r);
}
int main()
{
	int n,m,p,x,y;
	scanf("%d%d",&n,&m);
	build(1,1,n);
	for(int i=1;i<=m;i++)
	{
		scanf("%d%d%d",&p,&x,&y);
		if(p==1)
		{
			update(1,x,y);
		}
		else if(p==2)
		{
			ll res=query_sum(1,x,y);
			printf("%lld\n",res);
		}
		else
		{
			ll res=query_max(1,x,y);
			printf("%lld\n",res);
		}
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值