算法训练 操作格子
时间限制:1.0s 内存限制:256.0MB
问题描述
有n个格子,从左到右放成一排,编号为1-n。
共有m次操作,有3种操作类型:
1.修改一个格子的权值,
2.求连续一段格子权值和,
3.求连续一段格子的最大值。
对于每个2、3操作输出你所求出的结果。
输入格式
第一行2个整数n,m。
接下来一行n个整数表示n个格子的初始权值。
接下来m行,每行3个整数p,x,y,p表示操作类型,p=1时表示修改格子x的权值为y,p=2时表示求区间[x,y]内格子权值和,p=3时表示求区间[x,y]内格子最大的权值。
输出格式
有若干行,行数等于p=2或3的操作总数。
每行1个整数,对应了每个p=2或3操作的结果。
样例输入
4 3
1 2 3 4
2 1 3
1 4 3
3 1 4
1 2 3 4
2 1 3
1 4 3
3 1 4
样例输出
6
3
3
数据规模与约定
对于20%的数据n <= 100,m <= 200。
对于50%的数据n <= 5000,m <= 5000。
对于100%的数据1 <= n <= 100000,m <= 100000,0 <= 格子权值 <= 10000。
就是个模板题,过去太懒,欠的账都是要还的,一点一点来吧。
#include<stdio.h>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const ll maxn=1e5+10;
struct node{
ll l,r,v;
ll m,s;
}tree[4*maxn];
void pushdown(int i)
{
tree[i].s=tree[i<<1].s+tree[i<<1|1].s;
tree[i].m=max(tree[i<<1].m,tree[i<<1|1].m);
}
void build(int i,int l,int r)
{
tree[i].l=l;
tree[i].r=r;
if(l==r)
{
scanf("%lld",&tree[i].v);
tree[i].m=tree[i].s=tree[i].v;
return ;
}
int mid = (l+r)/2;
build(i<<1,l,mid);
build(i<<1|1,mid+1,r);
pushdown(i);
}
void update(int i,int x,int v)
{
if(tree[i].l>x || tree[i].r<x)
{
return ;
}
if(tree[i].l==tree[i].r)
{
tree[i].m=tree[i].s=tree[i].v=v;
return ;
}
update(i<<1,x,v);
update(i<<1|1,x,v);
pushdown(i);
}
ll query_max(int i,int l,int r)
{
if(tree[i].l>r || tree[i].r<l)
{
return 0;
}
if(tree[i].l>=l && tree[i].r<=r)
{
return tree[i].m;
}
return max(query_max(i<<1,l,r),query_max(i<<1|1,l,r));
}
ll query_sum(int i,int l,int r)
{
if(tree[i].l>r || tree[i].r<l)
{
return 0;
}
if(tree[i].l>=l && tree[i].r<=r)
{
return tree[i].s;
}
return query_sum(i<<1,l,r)+query_sum(i<<1|1,l,r);
}
int main()
{
int n,m,p,x,y;
scanf("%d%d",&n,&m);
build(1,1,n);
for(int i=1;i<=m;i++)
{
scanf("%d%d%d",&p,&x,&y);
if(p==1)
{
update(1,x,y);
}
else if(p==2)
{
ll res=query_sum(1,x,y);
printf("%lld\n",res);
}
else
{
ll res=query_max(1,x,y);
printf("%lld\n",res);
}
}
return 0;
}