Ubuntu18.04 配置深度学习环境

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_37423198/article/details/89930046

Ubuntu18.04 配置深度学习环境

运行环境: Ubuntu 18.04

安装完系统,先更换镜像源(ustc),然后apt-get update

安装显卡驱动+cuda

新版本的nvidia-driver安装同时自动可以安装对应最新版本的cuda

$ sudo add-apt-repository ppa:graphics-drivers/ppa
$ sudo apt update

查看当前系统推荐你安装的驱动版本

$ ubuntu-drivers devices

安装最新版本

$ ubuntu-drivers devices

重启,查看是否安装成功,发现cuda10.1也被同时自动安装

$ nvidia-smi
Tue May  7 21:05:41 2019       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 430.09       Driver Version: 430.09       CUDA Version: 10.1     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  GeForce RTX 2070    Off  | 00000000:01:00.0 Off |                  N/A |
|  0%   39C    P8    24W / 185W |    218MiB /  7982MiB |      4%      Default |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
|    0      1280      G   /usr/lib/xorg/Xorg                           136MiB |
|    0      1449      G   /usr/bin/gnome-shell                          80MiB |
+-----------------------------------------------------------------------------+

安装cuDNN

官网https://developer.nvidia.com/rdp/cudnn-download 下载,需要注册下账号,选对应cuda的版本的cuDNN,

下载对应的deb包:cuDNN Runtime Library for Ubuntu18.04 (Deb)

得到:libcudnn7_7.5.1.10-1+cuda10.1_amd64.deb

安装即可:

$ sudo dpkg -i libcudnn7_7.5.1.10-1+cuda10.1_amd64.deb

安装相关库

$ sudo apt-get install python3-pip python3-tk
$ sudo pip3 install numpy scipy matplotlib pillow

安装pytorch:最好从官网安装https://pytorch.org/get-started/locally/

选择对应版本的安装命令:

例如torch1.0.1版本,cuda10.X, python3.6, linux系统(目前最新1.1.0版本):

$ sudo pip3 install https://download.pytorch.org/whl/cu100/torch-1.0.1-cp36-cp36m-linux_x86_64.whl
$ sudo pip3 install torchvision
展开阅读全文

没有更多推荐了,返回首页