美团二面题
简单介绍三种滤波的思路:
共同点:三种滤波的方式其实可以理解为卷积操作,只是针对于给定的Filter进行过滤。如果kernel size现在是3*3(如果值都设置为1),则在9个单元格进行处理,没有padding的情况下, 默认从第二行开始。
中值滤波:候选区域的9个点和过滤器的9个点做元素相乘后,将核中心的点赋值为这个9个乘积的中值,如果3*3 的kernel (值都为1),那么做完中值滤波后,此时5的位置为18。
最大值滤波和均值的意思是9个元素逐元素相乘后,取这9个值的最大值和均值。
coding 的思路:考虑padding、stride以及滑窗的动作计算,同时需要知道numpy的几个函数,我当时就给忘记了,尴尬
import numpy as np
def median_filter(input_image,kernel,stride=1,padding=False):
"""
中值滤波/最大滤波/均值滤波
:param input_image: 输入图像
:param filter_size: 滤波器大小
:return:
"""
# 填充(默认为1)
padding_num = 1
if padding:
padding_num = int((kernel.shape[0]-1)/2)
input_image = np.pad(input_image,(padding_num,padding_num),mode="constant",constant_values=0)
out_image = np.copy(input_image)
# 填充后的图像大小
w,h = input_image.shape
print(input_image.shape,padding_num)
for i in range(padding_num,w-padding_num,stride):
for j in range(padding_num,h-padding_num,stride):
region = input_image[i-padding_num:i+padding_num+1,j-padding_num:j+padding_num+1]
print(i,j)
print(region.shape,kernel.shape)
# 确保 图像提取的局部区域 与 核大小 一致
assert (region.shape == kernel.shape)
# 中值滤波np.median, 最大值滤波 np.maximum 均值滤波: np.mean
out_image[i,j] = np.median(np.dot(region,kernel))
# 裁剪原图像大小
if padding:
out_image = out_image[padding_num:w-padding_num,padding_num:h-padding_num]
return out_image
if __name__ == '__main__':
# 随机浮点数, 模仿灰度图
input_image = np.random.rand(16,16)
# 标准正态分布
kernel = np.random.rand(3,3)
print(input_image.shape,kernel.shape)
output = median_filter(input_image,kernel)
print(output.shape)