中值滤波/最大值滤波/均值滤波 python实现

美团二面题

  

简单介绍三种滤波的思路:

共同点:三种滤波的方式其实可以理解为卷积操作,只是针对于给定的Filter进行过滤。如果kernel size现在是3*3(如果值都设置为1),则在9个单元格进行处理,没有padding的情况下, 默认从第二行开始。

中值滤波:候选区域的9个点和过滤器的9个点做元素相乘后,将核中心的点赋值为这个9个乘积的中值,如果3*3 的kernel (值都为1),那么做完中值滤波后,此时5的位置为18。

最大值滤波和均值的意思是9个元素逐元素相乘后,取这9个值的最大值和均值。

coding 的思路:考虑padding、stride以及滑窗的动作计算,同时需要知道numpy的几个函数,我当时就给忘记了,尴尬

import numpy as np

def median_filter(input_image,kernel,stride=1,padding=False):
    """
    中值滤波/最大滤波/均值滤波
    :param input_image: 输入图像
    :param filter_size: 滤波器大小
    :return:
    """

    # 填充(默认为1)
    padding_num = 1
    if padding:
        padding_num = int((kernel.shape[0]-1)/2)
        input_image = np.pad(input_image,(padding_num,padding_num),mode="constant",constant_values=0)

    out_image = np.copy(input_image)

    # 填充后的图像大小
    w,h = input_image.shape
    print(input_image.shape,padding_num)

    for i in range(padding_num,w-padding_num,stride):
        for j in range(padding_num,h-padding_num,stride):

            region = input_image[i-padding_num:i+padding_num+1,j-padding_num:j+padding_num+1]
            print(i,j)
            print(region.shape,kernel.shape)
            # 确保 图像提取的局部区域 与 核大小 一致
            assert (region.shape == kernel.shape)
            # 中值滤波np.median,  最大值滤波 np.maximum  均值滤波: np.mean
            out_image[i,j] = np.median(np.dot(region,kernel))



    # 裁剪原图像大小
    if padding:
        out_image = out_image[padding_num:w-padding_num,padding_num:h-padding_num]
    return out_image


if __name__ == '__main__':
    # 随机浮点数, 模仿灰度图
    input_image = np.random.rand(16,16)
    # 标准正态分布
    kernel = np.random.rand(3,3)
    print(input_image.shape,kernel.shape)
    output = median_filter(input_image,kernel)
    print(output.shape)



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

低吟浅笑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值