分类算法——模型评估(八)

本文讨论了在多分类任务中的混淆矩阵、精确率、召回率以及F1-score等评估指标。特别强调了在样本严重不均衡情况下,仅依赖准确率可能产生误导,提出使用ROC曲线和AUC指标来更全面地衡量模型性能。
摘要由CSDN通过智能技术生成

1混淆矩阵

在分类任务下,预测结果与正确标记之间存在四种不同的组合,构成混淆矩阵(适用于多分类)
在这里插入图片描述

TP = True Possitive
FN = False Negative

2精确率(Precision)与召回率(Recall)

  • 精确率:预测结果为正例样本中真实为正例的比例

在这里插入图片描述

  • 召回率:真实为正例的样本中预测结果为正例的比例(查得全,对正样本的区分能力)
    在这里插入图片描述
    还有其他的评估标准,F1-score,反映了模型的稳健型。
    在这里插入图片描述

3分类评估报告API

  • sklearn.metrics.classification_report(y_true,y_pred,labels=[],target_names=None )
    • y_true:真实目标值
    • y_pred:估计器预测目标值
    • labels:指定类别对应的数字
    • target_names:目标类别名称
    • return:每个类别精确率与召回率

假设这样一个情况,如果99个样本癌症,1个样本非癌症,不管怎样我全都预测正例(默认癌症为正例),准确率就为99%但是这样效果并不好,这就是样本不均衡下的评估问题

准确率:99%
召回率:99/99 = 100%
精确率:99%
F1-score:2*99%*100%/ 199% = 99.497%

问题:如何衡量样本不均衡下的评估?
答:ROC曲线与AUC指标

  • 22
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
贝叶斯分类算法是一种基于贝叶斯定理的统计算法,常用于文本分类、垃圾邮件过滤和数据挖掘等任务中。在对wine数据集进行分类时,我们可以使用贝叶斯分类算法。 首先,我们需要了解wine数据集的特征和标签。根据数据集的描述,wine数据集包含了一些葡萄酒的化学分析结果作为特征,以及该葡萄酒所属的类别作为标签。这些特征可以包括酒精含量、苹果酸含量、灰分含量等。 贝叶斯分类算法的核心思想是基于训练集计算每个类别的先验概率和条件概率,然后使用贝叶斯定理来计算给定特征时,每个类别的后验概率,最终选择后验概率最大的类别作为预测结果。 为了使用贝叶斯分类算法对wine数据集进行分类,我们需要进行以下步骤: 1. 数据预处理:对原始数据进行清洗和处理,包括去除缺失值、标准化特征等。 2. 特征选择:根据具体问题的要求,选择合适的特征来训练模型,可以使用相关性分析等方法进行特征选择。 3. 训练模型:将数据集分成训练集和测试集,使用训练集来计算每个类别的先验概率和条件概率。 4. 预测分类:对测试集中的每个样本,根据贝叶斯定理计算该样本属于每个类别的后验概率,选择后验概率最大的类别作为预测结果。 5. 模型评估:使用测试集评估模型的性能,可以使用准确率、精确率、召回率等指标来评估模型的好坏。 贝叶斯分类算法的优点是简单、直观,能够处理多分类问题和高维数据。然而,贝叶斯分类算法也有一些限制,例如对特征之间的关联性要求较高,对输入的先验概率分布有一定假设等。 在应用贝叶斯分类算法对wine数据集进行分类时,我们需要根据具体情况选择适合的特征和合适的先验分布,对模型进行调优,以获得更好的分类结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值