算法基础之最小生成树与二分图

1、大纲

n是点,m是边
在这里插入图片描述
染色法是判断一个图是不是二分图(dfs)
在这里插入图片描述

2、最小生成树

2.1、Prim

在这里插入图片描述

在这里插入图片描述

#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 510, INF = 0x3f3f3f3f;

int n, m;
//prim算法适合稠密图,加上本题也是稠密图
int g[N][N];
//每个点到集合的距离
//集合->找到集合最小值的点组成的连通图
int dist[N];
//是否在集合中
bool st[N];


int prim()
{
    memset(dist, 0x3f, sizeof dist);
    //最小生成树中,所有边的权重之和  
    int res = 0;
    for (int i = 0; i < n; i ++ )
    {
    	//每一次循环开始 都让t=-1。
        int t = -1;
        for (int j = 1; j <= n; j ++ )
        //在集合外(第一个点或者是到集合距离最小的点)
            if (!st[j] && (t == -1 || dist[t] > dist[j]))
            //当前到集合距离最小的点
                t = j;
        st[t] = true;
        //i 判断是否为第一个点 第一个点的dist[t]=正无穷
        //不是第一个点且图是不联通的(不存在最小生成树),返回无穷大
        if (i && dist[t] == INF) return INF;
        //不是第一个点
        if (i) res += dist[t];
		//使用刚插入集合的点,更新其它点到集合的距离
        for (int j = 1; j <= n; j ++ )
            if(!st[j])
                dist[j] = min(dist[j], g[t][j]);
    }

    return res;
}


int main()
{
    scanf("%d%d", &n, &m);

   for(int i=1;i<=n;i++)
        for(int j=1;j<=n;j++)
            if(i==j) g[i][j]=0;
            else g[i][j]=INF;
    while (m -- )
    {
        int a, b, c;
        scanf("%d%d%d", &a, &b, &c);
        //无向图,要添加两个方向的边,有重边选最小的边。
        g[a][b] = g[b][a] = min(g[a][b], c);
    }

    int t = prim();
	//当所有点不联通的时候,就不存在生成树
    if (t == INF) puts("impossible");
    else printf("%d\n", t);

    return 0;
}

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
最小生成树是没有环的,正边和负边都可以。

2.2、Kruskal

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 100010, M = 200010, INF = 0x3f3f3f3f;

int n, m;
//并查集中的p[N]
int p[N];
//算法本身不需要用复杂的数据结构存储边
struct Edge
{
    int a, b, w;
    //重载结构体,用sort实现edge从小到大的排序 =
    bool operator< (const Edge &W)const
    {
        return w < W.w;
    }
}edges[M];

int find(int x)
{
    if (p[x] != x) p[x] = find(p[x]);
    return p[x];
}

int kruskal()
{
    sort(edges, edges + m);

    for (int i = 1; i <= n; i ++ ) p[i] = i;    // 初始化并查集

    //res存储最小生成树权重之和,cnt当前加了多少边
    int res = 0, cnt = 0;
    //从小到大枚举所有边
    for (int i = 0; i < m; i ++ )
    {
        int a = edges[i].a, b = edges[i].b, w = edges[i].w;

        a = find(a), b = find(b);
        if (a != b)
        {
            //合并集合
            p[a] = b;
            res += w;
            cnt ++ ;
        }
    }
    //n个点 n-1条边
    if (cnt < n - 1) return INF;
    return res;
}

int main()
{
    scanf("%d%d", &n, &m);

    for (int i = 0; i < m; i ++ )
    {
        int a, b, w;
        scanf("%d%d%d", &a, &b, &w);
        edges[i] = {a, b, w};
    }   

    int t = kruskal();

    if (t == INF) puts("impossible");
    else printf("%d\n", t);

    return 0;
}

3、二分图

3.1、染色法判定二分图

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

//无向图,存两条有向边
const int N = 100010, M = 200010;

int n, m;
int h[N], e[M], ne[M], idx;
int color[N];

void add(int a, int b)
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}

bool dfs(int u, int c)
{
    //对当前点给予染色
    color[u] = c;
    //遍历孩子
    for (int i = h[u]; i != -1; i = ne[i])
    {
        int j = e[i];
        //是否没染色 
        if (!color[j])
        {
            //染色 失败时返回false
            if (!dfs(j, 3 - c)) return false; 
        }
        //不需要染色 判断叶子与父亲是否一致  一致就失败
        else if (color[j] == c) return false;
    }
 
    return true;
}

int main()
{
    scanf("%d%d", &n, &m);

    memset(h, -1, sizeof h);

    while (m -- )
    {
        int a, b;
        scanf("%d%d", &a, &b);
        add(a, b), add(b, a);
    }

    bool flag = true;
    for (int i = 1; i <= n; i ++ )
        //如果当前点没有染色,就进行染色
        if (!color[i])
        {
            //返回false就不是二分图
            if (!dfs(i, 1))
            {
                flag = false;
                break;
            }
        }

    if (flag) puts("Yes");
    else puts("No");

    return 0;
}

3.2、匈牙利算法

3.2.1 二分图最大匹配

在这里插入图片描述
在这里插入图片描述

#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 510, M = 100010;

int n1, n2, m;
int h[N], e[M], ne[M], idx;
//右边的妹子和哪个男生在一起
int match[N];
//不重复搜一个点
bool st[N];

void add(int a, int b)
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++ ;
}

bool find(int x)
{
    //遍历所有看上的妹子
    for (int i = h[x]; i != -1; i = ne[i])
    {
        int j = e[i];
        //防止重边,考虑过的就抛弃
        if (!st[j])
        {
            //考虑过的设置为true
            st[j] = true;
            //当这个妹子没有匹配,或者匹配的有下家
            /*
            find(match[j]) 的执行思路:
            match[j]对应的是j号女生牵手的男生w(假设)。
            首先对于x考虑过的女生,w不再考虑,因为这些女生已经牵手
            w需要考虑x没考虑过的(且w喜欢的女生)。
            当找到女生,才把j让给x
            */
            if (match[j] == 0 || find(match[j]))
            {
                //与此男子匹配并返回true
                match[j] = x;
                return true;
            }
        }
    }

    return false;
}

int main()
{
    scanf("%d%d%d", &n1, &n2, &m);

    memset(h, -1, sizeof h);

    //虽然为无向图,但是只需要考虑从n1->n2,存储一条遍就可以。
    while (m -- )
    {
        int a, b;
        scanf("%d%d", &a, &b);
        add(a, b);
    }
    //当前匹配的数量
    int res = 0;
    //依次分析每个男生找哪一个妹子
    for (int i = 1; i <= n1; i ++ )
    {
        //男子考虑的妹子置为空 保证对一个男子每个妹子考虑一遍
        memset(st, false, sizeof st);
        //find返回bool类型
        if (find(i)) res ++ ;
    }

    printf("%d\n", res);

    return 0;
}

左边当前匹配的这个点已经属于其它点,看其它点能否换一个点匹配,将这个点让给当前点。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值