Python入门程序【十二】

程序员之所以犯错误,不是因为他们不懂,而是因为他们自以为什么都懂。

s_a = set([1, 2, 2, 3, 4, 5, 6])
s_b = set([4, 5, 6, 7, 8, 9])
print(s_a)
print(s_b)

# 判断元素是否存在
print(5 in s_a)
print(10 in s_b)

结果 :

{1, 2, 3, 4, 5, 6}
{4, 5, 6, 7, 8, 9}
True
False

# 并集
print(s_a | s_b)
print(s_a.union(s_b))

# 交集
print(s_a & s_b)
print(s_a.intersection(s_b))

# 差集 A - (A & B)
print(s_a - s_b)
print(s_a.difference(s_b))

# 对称差 (A | B) - (A & B)
print(s_a ^ s_b)
print(s_a.symmetric_difference(s_b))

结果:

{1, 2, 3, 4, 5, 6, 7, 8, 9}
{1, 2, 3, 4, 5, 6, 7, 8, 9}
{4, 5, 6}
{4, 5, 6}
{1, 2, 3}
{1, 2, 3}
{1, 2, 3, 7, 8, 9}
{1, 2, 3, 7, 8, 9}

# 修改元素
s_a.add('x')
s_a.update([4, 5, 60, 70])
print(s_a)
s_a.remove(70)
print(s_a)
# s_a.remove(100)

print(len(s_a))
for i in s_a:
    print(i)

结果:

{1, 2, 3, 4, 5, 6, 'x', 70, 60}
{1, 2, 3, 4, 5, 6, 'x', 60}
8
1
2
3
4
5
6
x
60

li = list(range(10))
print(li)
      
# 切片 [start:end:steps]  >= start & < end
print(li[2:5])  # [3, 4, 5]
print(li[:4])   # [0, 1, 2, 3]
print(li[5:])   # [6, 7, 8, 9]
print(li[0:20:3])   # [0, 3, 6, 9]

# 负值怎么处理?
print(li[5: -2])    # [5, 6, 7]
print(li[9:0:-1])   # [9, 8, 7, 6, 5, 4, 3, 2,1]
print(li[9::-1])   # [9 ... 0]
print(li[::-2]) # [9, 7, 5, 3, 1]

# 切片生成一个新的对象
print(li)   # 还是保持原样 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

re_li = li[::-1]
print(re_li) #[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

简单的切片操作,结果都写注释上了

def spiral_order(matrix):
    ret = []
    rows = len(matrix)
    if rows == 0:
        return ret
    columns = len(matrix[0])
    i, j = 0, 0  # 方阵的左上角坐标
    while (rows > 0) and (columns > 0):
        for k in range(j, j + columns):  # 第一行
            ret.append(matrix[i][k])
        if rows > 1:  # 行数大于1
            for k in range(i + 1, i + rows):  # 最右列
                ret.append(matrix[k][j + columns - 1])
            if columns > 1:  # 列数大于1
                for k in range(j + columns - 2, j - 1, -1):  # 最下行
                    ret.append(matrix[i + rows - 1][k])
                for k in range(i + rows - 2, i, -1):  # 最左列
                    ret.append(matrix[k][j])
        rows -= 2
        columns -= 2
        i += 1
        j += 1
    return ret

print(spiral_order([]))
print(spiral_order([[1]]))
print(spiral_order([[1, 2], [3, 4]]))
print(spiral_order([[1, 2, 3], [4, 5, 6], [7, 8, 9]]))
numbers= [[0 for i in range(10)] for x in range(10)]
for x in range(10):
    for y in range(10):
        numbers[x][y]=x+y
print(spiral_order(numbers))

结果:

[]
[1]
[1, 2, 4, 3]
[1, 2, 3, 6, 9, 8, 7, 4, 5]
。。。。。

刚看到这段代码你可能有点懵,这打印的是什么,没啥顺序啊,这其实是一道算法题,要求是这样的

给定任意大小的矩形数组,将它按照顺时针打印出来,大体的样子可以画一张图来表示

如果数字少你还是不明白的话,你再看看这张图

程序很鸡肋,就是考算法的

可以采取正向思维解决,先打印第一行,然后打印最后一列,再打印最后一行,打印最左边一列,然后行列移动缩小范围再次进行之前的操作

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

幽蓝丶流月

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值